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Introduction

Microencapsulation s atechnology that involves enclosing
solid, liquid, or gaseous materials in small capsules, which
release their contents in a controlled manner under the
influence of specific factors. The microcapsules comprise a
thin semipermeable membrane surrounding a core, where the
material of interest i located (Naveedetal , 2021). According
to Rios-Aguirre and Gil-Garzon (2021), most microcapsules
are small spheres with diameters ranging from 0.2 to 5000
sun. The structures of the microcapsules can be spherical or
imegular, with the core distributed within a matrix of wall
material (Choudhury etal., 2021). The release of the intemal
material can be triggered by factors suich as temperature, pH,
enzymatic action, or mechanical stress (Kamaly etal., 2016)

Bioactive food components, such as vitamins,
antioxidants, and probiotics, are sensitive to degradation,
making microencapsulation a suitable option for protecting
them. This technology benefits bioactives like lipids,
carbohydrates, proteins, and probiotics (Zabot et al., 2022).
‘The microencapsulation of lipids, for example, allows their
inclusion in food products, protecting them from oxidation
and improving their solubility (Calderén-Oliver & Ponce-
Alquicira, 2022).

The benefits of microencapsulation include improved
stability of the core material, protection against oxidative
stress, masking of undesirable flavors, and extending the
shelf life of food products. Italso facilitates the handling and
uniform distribution of bioactives in food mixtures (Pattnaik
etal, 2021), Despite its success in the pharmaceutical and
cosmetic industries, microencapsulation has yet to have as
significant an impact in the food industry, mainly due to
concems over costs. However, it can be cost-effective when
applied to active ingredients in functional foods (Pifion-
Balderrama et al., 2020).

This review aimed to analyze microencapsulation
techniques used in the food industry to protect and enhance
the functionality of bioactive compounds, such as vitamins,
antioxidants, probiotics, and essential fatty acids. The
review seeks to evaluate the benefits of this process in
tems of stability, controlled release, and bioavailability of
encapsulated compounds, as well as the specific applications
of technologies such as spray drying, coacervation, and
extrusion. Additionally, it aimsto discuss how these strategies
contribute to innovation inthe design of functional foods and
nutraceuticals, optimizing their quality and response to the
demands of health-conscious consumers.

Microencapsulation methods
‘The microencapsulation process has been carried out using

various techniques, and it is estimated that over 200 methods
are documented in the patent literature (Vieira et al., 2020).
The classification of these methods varies significantly,
and creating a universal categorization system is becoming
increasingly complex. In this review, the classification
proposed by de Vos et al. (2010) has been adopted, which
wroups the methods into families. The selection of the
appropriate method depends on factors such as budget, costs,
properties of the core material and coating, the desired size
of the microcapsules, the final application, and the expected
release mechanisms (Choudhury et al., 2021).

Emulsion

Emulsion is one of the most commonly reported
techniques for obtaining microcapsules in small quantities.
This process is carried out in two steps: dispersion and
hardening. First, an aqueous phase containing the core and
the coating material is dispersed in an organic phase, such
as oil, resulting in an oil-in-water emulsion. The dispersed
aqueous droplets re hardened by cooling or adding a gelling
or cross-linking agent. After the formation of microspheres,
they are transferred to an aqueous system to be washed, and
the oil i removed from their surface. This technique allows
for a reduction in the size of the microspheres compared to
etrusion and does not present significant challenges for
scaling up. However, the residual oil in the microcapsules
limits their use in the development of low-calorie foods
(ayyaril etal,, 2023).

Coacervation

Coacervation is a variant of emulsification technology,
which involves mixing a solution of the bioactive compound
with a molecular matrix of opposite charge to form a
complex. The size and characteristics of the microcapsules
can be modified by adjusting the pH, ionic concentration,
and concentration ratio between the core and the coating
‘material. This technique is primarily based on electrostatic
interactions, although hydrophabic interactions also play a
role (de Vos etal,, 2010).

Complex coacervation occurs when two polymers with
opposite charges interact, resulting in a complex whose
solubilit is so low that it precipitates, forming a film
around the core to be coated. This process is carried out by
PH changes that alter the charges of one or both polymers
or by dilution processes that promote interaction between
substances with opposite charges
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Spray drying

Spray drying is one of the most commonly used
microencapsulation methods in the food industry due to
its low cost and the high quality and quantity of products
obtained. The process involves dispersing the core material
in a polymer solution, forming an emulsion o dispersion,
then homogenized and atomized into a diying chamber. In
this chamber, the water evaporates, and the microcapsules
are collected (Mohammed et al, 2020). However, this
method s main disadvantage lies in high temperatures during
drying, which can damage bioactives, especially probiotics.
Despite this, some studies suggest that drying parameters
can be optimized to achieve the desired results (Arebo et
al. 2023). Other researchers point out that spray diying is
suitable for heat-sensitive materials due o the short exposure
to high temperatures (Drozlowska et a., 2023).

Spray drying only applies to dispersions in aqueous
systems, so the coating material must be highly soluble in
‘water. For this reason, carbohydrates are most often used as
the outer phase. Although this method favors hydrophilic
substances, it can also be applied to lipophilic substances.
‘These substances are dissolved in a lipophilic phase tha is
added to the aqueous phase to form an oil-in-water emulsion
before drying. The microcapsules obtained by this method
are highly stable due o their low water activity, which allows
for an extended shelf life

Freeze drying

Fluidized bed coating is a technology that involves
suspending the core to be microencapsulated, usually in
a solid state, in an airflow directed from the bottom to the
top inside a chamber. The coating material s atomized onto
the bioactive component using another device. This method
offers a wider variety of coating materials than spray drying,
as lipidic, protein, polysaccharides, or emulsifying materials
can be used (Zhang et al., 2020).

Many microcapsules produced by other methods undergo
this process to apply a second layer, which can influence the
controlled release of the core, provide additional protection,
improve the compatibility of the first layer with the food
matrix, mask flavors, or direct the release to the specific
desired site (de Vos et al., 2010).

Extrusion

The extrusion method consists of three main steps: first,
the core material i dispersed in the coating material; then,
this dispersion is divided into tiny droplets using a fine-
diameter needle or a suitable device for this purpose; and
finally, the resulting droplets pass through a dehydrating

liquid ora solution that promotes polymer cross-linking. This
procedure is effective for thermolabile materials or those
sensitive to harmful solvents and can be performed under
anaerobic conditions (Bamidele & Emmambux, 2020)

Due to its complexity, it is generally considered a method
suitable only for laboratory scales. However, significant
advancements have been made in scaling it up, such as
using multiple needle systems, rotating atomization discs,
or intenupted flow techniques. This method is primarily
applied to probiotics but is also used to microencapsulate
flavors, enzymes, and proteins (Kowalska et al, 2022).

Other microencapsulation technologies

Several additional technologies besides those previously
mentioned are rarely used due to their high cost despite
their high efficiency. However, they can help solve specific
problems in the field of microencapsulation. One example
is liposome technology, which consists of a spherical lipid
bilayer that encapsulates the bioactive compound to be
protected. This liposome is formed by dispersing polar
lipids, usually phospholipids, in aqueous dispersions (de Vos
etal, 2010).

Another unique method s microencapsulation in
cyclodextrins, circular polymeric molecules composed
of glucose monomers. The exterior of these molecules
is hydrophilic, while their interior has hydrophobic
characteristics, which can be enhanced by decreasing the
‘number of glucose monomers in the cyclodextrin structure.
‘This method increases the solubility of nonpolar moleculesin
polar matrices and prevents their inactivation or degradation
(Poulson et al, 2022).

Coating materials

‘The biomaterials used in microencapsulation vary in their
chemical composition and natural source. Among the protein
coatings applied to probictics, gelatin, and bovine whey
proteins stand out, having beenused as encapsulating agents,
either combined by cross-linking with polysaccharides
(Koh et al,, 2022) or individually (Picot & Lacroix, 2004),
There is a greater variety of encapsulating agents of
polysaccharide origin, with alginate, derived from seaweed,
being widely used in probiotic encapsulation: its limitation
i being affected by the lactic acid produced by lactic acid
bacteria (Mahmoud et al., 2020), cellulose derivatives
(Lukova et al, 2023), starch (Lukova et al, 2023), and
chitosan, a polysaccharide obtained from chitin found in the
exoskeletons of crustaceans, insects, and in the cell walls of
filamentous fungi (Meng et al, 2023).
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tract without losing viability o undergoing physiological
changes (Mendonga et al., 2023) so that they reach the
intestine in sufficient quantities to ensure their survival and
multiplication.

There are challenges related to the low viability of
probiotic bacteria in fenmented products. Various factors
have been identified that affect probiotic viabilit, from the
production stage to passage through the gastrointestinal tract.
During fermentation, factors such as the composition of the
growth medium, toicity generated by the accumulation of
metabolites (organic acids, hydrogen peroxide), dissolved
oxygen concentration, and high biomass can affect viability.
Beforebeing incorporatedinto foods, probiotics may undergo
mechanical, osmotic, or oxygen stress, and if subjected to
spray drying or freezing treatments, they may be exposed to
extreme temperatures and pronounced cellular dehydration
(Mendonga et al., 2023).

During storage, microorganism viability can be affected by
storage temperature, incompatibilities with starter cultures,
and intrinsic characteristics of the food matrix, such as pH,
moisture content, dissolved oxygen, and concentrations of
proteins and sugars. Viability is also affected by the adverse
conditions of the upper gastrointestinal tract, extreme pH,
enzymatic activity, and bile salts. Proper design of the food
matrix can mitigate these effects (Ulrika, 2022)

Commercial probiotic strains are typically selected for
their technological properties rather than their probiotic
potential, as some intestinal strains face difficulties in
producing large quantities of biomass. There is a growing
demand for new technologies that optimize scaling, ensure
microorganism stability in food, allow the incorporation of
new strains, and expand food matrix options while ensuring
economic profitability (Terpou et al., 2019).

e
Scewm o

w »

Strategies to increase probiotic resistance to adverse
conditions include sublethal stress during fermentation to
induce cross-resistance, the use of oxygen-impermeable
packaging, the addition of micronutrients, osmoprotectors
such as betaine, and microencapsulation (Agriopoulou et
al., 2023). Microencapsulation, which occurs naturally
through the excretion of exopolysaccharides during bacterial
‘growth, effectively protects microorganisms against osmotic
changes and adverse environmental factors. However, many
lactic acid bacteria do not produce exopolysaccharides in
sufficient quantities for complete encapsulation (urdskova
etal, 2022)

Microencapsulation in biodegradable polymer matrices
offers numerous advantages (Table 1), It simplifies the quan-
tification and handling of microorganisms, allows the incor-
poration of growth factors, prebiotics, osmoprotectants, and
thermoprotectors into the capsule, and the microcapsules can
be coated with other polymers to provide desired physical
or sensory properties. Additionally, the microcapsules can
be designed to release their contents in different areas of
the body, protecting probiotics during storage and passage
through the gastrointestinal tract to release them in the small
intestine, maintaining their viability and probitic properties
(Lakshmi et al., 2023).

Figure 1 shows the percentages of occurrence of different
encapsulation materials in the formulation of the microcap-
sules; the most commonly used material i alginate, and its
concentration in the microcapsule is directly related to the
survival of the probitics, especially when exposed to high
temperatures. The most used proteins are serum proteins and
casein, derived from milk, and gelatin obtained from the par-
tial hydrolysis of animal collagen tissue. Prebiotics (FOS,
inulin, IMO, agave nectar) are incorporated into the formu-

e 0 o

Percentuge ofoccurrence i the formulations of encapsulating

Figure 1. Most commonly used microencapsulating materials.
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Alginate

Alginate acid is a natural polyuronic acid extracted from
seaweed, composed of f-D-mannuronic acid (M) and a-L-
guluronic acid (G), linked by bonds between carbon atoms
1 and 4. The ratio of these residues varies depending on
the source of alginate acid extraction (Abka-Khajouei et
al. 2022). This polymer and its salts are block copolymers,
including homopolymers MM and GG, which can combine
or with individual residues. The ability of alginate acid or its
salts to bind to monovalent cations (such as sodium alginate)
and divalent cations (such as Ca®) favors gel formation, a
process dependent on the composition and amangement of
the blocks (Malektaj et al, 2023).

GG blocks have specific sites to bind to divalent cations,
and their interaction with other GG blocks promotes the
polymer cross-linking responsible for gelation. Thus, when
sodium alginate is added to a solution with dissociated
calcium salts, immediate interfacial polymerization occurs,
resulting in calcium alginate precipitation and gradual
gelation as the Ca* cations diffuse inward (Hurtado et al.,
2022).

Factorsaffectingthepreparation ofmicrocapsuleshavebeen
studied, suchasalginate and CaCl, concentrations, hardening
time, and cell concentrations in probiotic encapsulation
(Lotfipour et al., 2012). The conventional encapsulation
method uses sodium alginate in calcium chloride (CaCl,) to
encapsulate L. acidophilus and protect this organism from
the acidic conditions of gastric juice. Studies have shown
that cell cultures immobilized in calcium alginate offer better
protection, reflected in increased bacterial survival under
various conditions, compared to their unencapsulated state.
Additionally, the results indicate that the viability of bacteria
encapsulated in simulated gastric fluid increases as capsule
size increases (Lotfipour et al., 2012).

Chitosan

Chitosan s a deacetylated derivative of chitin, obtained
by treating chitin with a concentrated sodium hydroxide or
potassium hydroxide solution at high temperatures (Aranaz
et al, 2021). This process leads to the hydrolysis of the
Neacetyl bond of chitin, a natural polymer abundant after
starch and cellulose. Chitosan comprises composed units
of 2-deaxy-2-acetoamido-a-D-glucose (Piekarska et al.,
2023). Chitin, a fibrous polymer, provides highly chemical
and mechanical resistance materials. This polysaccharide,
a homopolymer of N-acetyl-D-glucosamine with p(1-4)
bonds, is commonly found as a white to yellowish powder
or flakes, non-toxic, biodegradable, and processable into

various derivatives (Piekarska et al, 2023)

Chitosan is widely used in the food and pharmaceutical
industries due to its film-forming properties, good
biocompatibility, biodegradability, and low cost (iménez-
Gomez & Cecilia, 2020). Tt is harmless (Jiménez-Gomez
& Cecilia, 2020) and a renewable resource. Its application
in probiotic encapsulation has been limited due to_its
antimicrobial properties (Yan et al., 2021). However, it has
been successfully used as an additional layer in alginate
microcapsules, providing hardness and improving their
sensory characteristics. Lactobacilli have been encapsulated
with chitosan using the emulsion method, successfully
encapsulating starter microorganisms that could be recovered
and reused with satisfactory results (Calinoiu et al., 2019).

Probiotics

Probictics have been defined in various ways, depending
on how their mechanisms of action and health benefits are
interpreted. The beneficial effects of probiotics are mainly
@rouped into two categories: antagonistic effects, which
inhibit the growth of pathogenic microorganisms, and
immunological effects, which strengthen the body’s natural
defense mechanisms (Latif et al, 2023).

‘The antipathogenic mechanism of probitics includes the
reduction of intestinal luminal pH through the production of
short-chain fatty acids such as acetic, lactic, o propionic acid;
restriction of essential nutrients for pathogens; alteration of
the redox potential and the production of hydrogen peroxide,
bacteriocins, and other inhibitory substances (Plaza-Diaz
et al., 2019). Probiotics can induce cell-mediated immune
responses, such as activation of the reticuloendothelial
system and cytokine release, as well as the pro-inflammatory
response through the regulation of tumor necrosis factors and
interleukins, in addition to directly activating macrophages
(Mazziotta et al,, 2023)

In recent years, probiotic-enriched foods have been
proposed to treat various intestinal disorders in humans, such
as lactose intolerance, Crohn's disease, acute gastroenteritis,
food alleries, atopic demmatitis, theumatoid arthritis, and
colon cancer (Kiousi et al., 2019). Among the most notable
probiotic microorganisms are the lactic acid bacteria of the
genus Lactobacillus and the bifidobacteria of the genus
Bifidobacterium.

Microencapsulation of probiotics

In order for probiotic foods to achieve the desired
therapeutic effects, they must remain metabolically stable
in the product and pass through the upper gastrointestinal
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lations to protect the microorganisms during microencapsu-
lation, storage, and gastrointestinal transit, and the resuls
obtained have been satisfactory.

Figure 2 shows different techniques for producing micro-
capsules at the laboratory scale. There is a marked tendency
toward extrusion, emulsification, and spray drying. These

Extruxion
Emulsion

Spray drying

Coating of microeapsules
Combined methods

Freez

drying

Complex coacervation

techniques are directly related to the size of the microcap-
sules, which in tum has consequences on the levels of protec-
tion, which often increase with the diameter of the microcap-
sules, and the changes in the testural properties of foods with
incorporated microcapsules, which on the contrary, decrease
as the size decreases. Another factor influencing the choice

Pereentage of use of cach method

Figure 2. Methods used in the production of microcapsules

of one technique over another is the thermal resistance of the
species, as well as the available microencapsulating material
and the possibility of scaling up the product

Conclusions

Microencapsulation is an_ alternative to increase the
viability of probiotics under simulated gastrointestinal
conditions and during the storage of the microcapsules or
the food matrix itself. The materials for microencapsulation
must be slected according to the characteristics of the
food in which they will be used and the applied method.
‘The most commonly used microencapsulation method is
extrusion, which produces microcapsules of acceptable size,
but there are difficulties in scaling up the process. The most
significant limitation of using probiotics in the food industry
lies in the variation of the food’s tetural properties. The
most studied probiotic bacterial genera are Lactobacillus
and Bifidobacterium. However, studies have also been
reported on species from the genera Lactococcus and
Pediococcus, as well as the yeast Saccharomyces boulardii.
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Table 1. Encapsulated probiotics studied in foods

Alleraentapaiiation Method Encapsulated microorganism Mictocapsile Food matrix Reference
materials dimensions
Camrageenan B. longum B6 and B. longum ATCC 15708 Yogurt Adhikari et al. (2000)
; Lactobacillus acidophilus MILA1 and 1.77mm, 0.064 with  Frozen fermented
Algingte Bificobacterium sp. BDBB2 Tween and SDS dairy desserts Shaty & Rawila,(2000),
Alginate,starch, . Lactobacillus acidophilus and Bifidobacterium G5 imm Tt Suliarn il {20009
elycerol spp.
Gellan gum and . : ) ) )
e y 4
e ko Extrusion Bifidobacterium infantis ATCC 15697 3mm Yogurt Sun & Griffiths (2000)
L acidophilus CSCC2401, B. infontis ) !
CSCC1912, L. acidophilus 910, and B. lactis 920 Cheddar cheese  Godward & Kailasapathy (2003)
Dairy fat and/or serum Emulsion and/or spray B. breve R070 and B. longum R023 3-75 um Yogurt Picot & Lacroix (2004)
proteins drying
Algmale_coatod wih Extrusion and coating Laciiophiie SA1 & bifiun KICC190A,and 1.89 mm Stirred y ogurt Krasaekoopt et al. (2004)
chitosan L casei 01
Chitosan, poli-L-lysine, - .
alginate, starch, and/or Extrusion and coating e dophilily CSCCA00 ahd I8 @t ~1 mm Yogurt Iyer & Kailasapathy (2005)
o €SCC2409
Alginate and starch L acidophilus DD 910 and B. lactis DD 920 Fetacheese  Kailasapathy & Masondole (2005)
Gellzngimand Extrusion B. lactis DSM 10140 20— 2200 pm Yogurt McMaster et al. (2005)
xanthan gum
Alginate, starch, FOS, i L. acidophilus, L. casei, L. rhamnosus, and o
and inulin Eaulsica Bifidobacterium spp. Yogit Capelaeral;(2000)
Alginate and starch Emulsion L acidophilus and B. lactis Yogurt Kailasapathy (2006)
Alginate Extrusion or emulsion L reuteri 40 pm (emulsion), 2~ Sausages Miuth Kuiaasarny’ & Holley
8 3 mm (extrusion) o (2006)
Camrageenan B. longum Stirred yogurt Adhikari et al. (2006)
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Abstract  The microencapsulation of bioactive compounds
is a widely used technology in the food industry to protect
and enhance the functionality of bioactive ingredients such
as vitamins, antioxidants, probiotics, and essential fatty ac-
ids. This process involves encapsulating bioactive particles
in a matrix, usually made of natural or synthetic polymers,
forming microcapsules that improve the compounds® sta-
bility, controlled release, and bioavailability. Among the
most commonly used techniques are spray-drying, coacer-
vation, and extrusion, chosen based on the properties of the
compound to be encapsulated and the desired applications
During food processing and storage, these technologies pro-
tect sensitive compounds from adverse factors such as oxi-
dation, moisture, light, or extreme pH. Microencapsulation
allows for the controlled release of bioactive compounds at
the right time and place, improving their effectiveness in the
body, an essential property in functional foods and nutraceu-
ticals. This review aimed to analyze the microencapsulation
techniques used in the food industry to protect and improve
the functionality of bioactive compounds such as vitamins,
antioxidants, probiotics, and essential fatty acids.

Keywords  microencapsulation, bioactive compounds,
probiotic microorganisms, stability, controlled release, food
industry.

How tocite
Tome. D., Casaricgo, A. & Gorcin, M.A. (2

Resumen  La microencapsulacién de compuestos bioac-
tivos es una tecnologia ampliamente utilizada en la indus-
tria alimentaria para proteger y mejorar la funcionalidad
de ingredientes bicactivos como vitaminas, antioxidantes,
probidticos y dcidos arasos esenciales. Este proceso implica
encapsular particulas bioactivas en una matriz, generalmente
de polimeros naturales o sintéticos, formando microcapsulas
que mejoran la estabilidad, liberacion controlada y biodis-
ponibilidad de los compuestos. Entre las técnicas mds em-
pleadas destacan el spray-drying, coacervacion y extrusion,
seleccionadas segin las propiedades del compuesto a encap-
sulary las aplicaciones deseadas. Estas tecnologias permiten
proteger los compuestos sensibles frente a factores adversos
como la oxidacién, la humedad, la uz o €l pH extremo du-
rante el procesamiento y almacenamiento de alimentos. La
microencapsulacin facilita la liberacion controlada de los
compuestos bioactivos en el momento y lugar adecuado, me-
jorando su efectividad en el organismo, propiedad esencial
en los alimentos funcionales y nutraceuticos. El objetivo de
esta revision fue analizar las técnicas de microencapsulacion
utilizadas en la industria alimentaria para proteger y mejorar
a funcionalidad de compuestos bioactivos, como vitaminas,
antiosidantes, probidticos y dcidos grasos esenciales

Palabras dave microencapsulacion, compuestos bioacti-
vos, microorganismos probiticos, estabilidad, liberacion
cantrolada, industria alimentaria
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Microencapsulation

Microcapsule

Method Encapsulated microorganism Food matrix Reference
materials dimensions
Alginate Eitriision L resieri aod B, Iongiant 2-3mm Saisages M”Lh“k‘““”(‘;:o“‘;y &Holley
A Biscuits, frozen
Serum proteins Betiaone follmed by L. rhamnosus RO11 2.8mm cranberry juice, and Ainsley et al. (2007)
freeze-drying A
vegetable juice
Alginate and starch Emulsion L casei and B. lactis Ice cream Homayouni et al. (2008)
Alginate Emulsion B. bificum BB-12 and L. acidophilus LA-5 340 pm Tranian yogurt Mortazavian et al. (2008)
Alginate or s ¢ . . N
o . Extrusion or emulsion  B. bifidum BB-12 and L. acidophilus LA-5 0.5-1.0mm Kasar cheese Ozer et al. (2008)
carrageenan, corn oil
Alginate or carrageenan Extrusion or emulsion  B. bifidum BB-12 and L. acidophilus LA-5 0.3-0.4mm White cheese Ozer et al. (2009)
Alginate, le‘cllhm. and Extrusion fol]q‘ved by  Lactobacillus spp., Bﬁdob(lclgrnuu spp., and Yogurt Donthidi et al. (2010)
starch freeze-drying Lactococcus lactis
L. helveticus CNCM 1-1722 and B. longum " G
CNCM 13470 Chocolate, milk Possemiers et al. (2010)
Alginate and pectin Extrusion L casei ~1 mm Yogurt Sandoval-Castilla et al. (2010)
Sennprosemyaid Spray drying L. rhamnosus GG Infant formula powder ~ Weinbreck et al. (2010)

palm oil
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