'%3E%0A%3Cg clip-path='url(%23c0)' opacity='0.5'%3E%0A%3Cpath d='M73.6 85H835.8' class='g0'/%3E%0A%3C/g%3E%0A%3C/g%3E%0A%3Cimage preserveAspectRatio='none' x='74' y='1205' width='107' height='30' href='data:image/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAGsAAAAeCAMAAAAcjhBMAAAC%2BlBMVEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/gAD1kADzkwD0jwCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoiwD4lQD3lAD2lAD4lgD4lgAAAAAAAAAAAAAAAAAAAAD5lQD2lAD4lQD3lgAAAAAAAAAAAAAAAAAAAAAAAAAAAADzjADvkgD3jwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/AAD1kwDwkwD/gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqlQD6lwD3lQD4lgD/lQAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4lQD2kwD2lAD4lQDyjAAAAAAAAAAAAAAAAAAAAAD/gAD1kgDzkQD5kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0H799AAAA/nRSTlOHhXJIDQBEJl%2BAEQfU%2BO%2ByYAlkgQqEYxttqt/38sqORwT//uMTINjCJLvzErp27P29L/b77s4isfEfBZigyAy5iu3EvOLmMM0UFxYePcwIhjn6GgtT28YDyTF1AjVAMAK/kZIB/EZN0gvZ/f36S38CwPkV2PzyP4L0KGJRrycqMSDHsFy3IWY/D%2BTqk6uoqbPnfdMpLNpqLaLBWVZYg9FA6R1pm5Z%2BSvABGiEIOGe13JUyc1rD6wzS88MMBtV71jw7Ut///%2BMUnUtMXZoETVgoetDXNuU1ixisa5fhtJCJz5yP3RzZEGi2DiUZfCp4eWFvjIh0bk5UcWV3SUOlOrWMzFoAAARmSURBVHjaxZZpeBNFGIC3x2ivUNME6KXm24LQQC0mUkpAWqS1tECxTUtovICt4oGJqUcqLWpVaMUgJFxWLFprPUEKiFeReivgEQSvggVEDguCN3g9j7Mz2WQC2W7rD31/ZCbfTPbdzHxzcJyPsPCISOTjLI47GwWI4qJjEIqNU0n0iz9H7W9N4DRqxKLtzw2Q6gMTk5JTUs8973wd/sKlgASfphlEe0QDRDA/jofUwQipLwCGIUOl1nTQxwS5hqlgOK3pMi70dc8ccRF2GcB4sUhqJg6NzPK5eNY1CrJHI2TSjJEYi7WXjPO1DofU01wpkENrufiR4y8dNSGPB8i/THQVTCwsLCyaNLl/P4Ap42RdLMVTeQhXdF2ugpKppbhiLisHmGbBrulSp4pkAKus64orr5K4%2BhrdDBii6JoJMEugsaH5UHkt60LXGWG2Ts51/Q03%2Brhpzs3IBmlaBZf9FnBUSEE8nPFBLvtsMFTJum69TeL2O5AT0swKLss0qPZn0J0D5tYEuVAtVM6THcO77pa4BxXXKY%2BhcC/AfWxDsOt%2BMM7vTW7EjAVYoDhfiTj76uVcDQ/AQq2cK/ZBlytpEeYh1%2BIlACnuLCVXgwdAlRS1VBfK5QaoFeRc5nIIZnyCoLC%2BlnnEfobli1as1AW71BkGUNXL5nzxwyMCzGj0OMCYoOBCw8I9KvJexrpHLKKrfNWjmLlNq/E2lYt6tZZFHlsOjzcruHBqr3yipU6P9w3%2BSR12AS8i2lVuOrStAE8FuZ6ehNAzzz7H8jxaY4S1ii6S/FVlL/DAzxJdFMe6tvW%2Bxg0AGwNddS/CpiKEXnr5FZZXX2vfDG29com61/Gfwa4tHfWYN%2BaZ/S1vAtiYBF8IcXbseutthnfefc9UAO/35Ir5YGtFYAfNI67pZ0xFlh7iAmfSNoDtuPjwo49ZPkGD9eDtybWMhx12f/RTGRdaDLxGkI67LVA5%2BcwuqCoHHDt7cml3QeYKKbjTIOf6rBqMn39B8qgDp%2BeX4uuZvnL7idZoOnfjXZzmfLbMfDnx2vJOJNU1m/F5FdqF1joANu35uquloARgL7Ga1522ljP3aamr0rNDwmVnXOoc3Cs/fn9XZx1eZd%2BUyrjQKv%2BTS1wH6C8b0xjyvk2qsfv2KIbVrAsdnKn3XzCmrEfchPS2UC7UcOjwLoMq29PZIU2cYGERpHBXOsN27DpyOL1Lesp3tsYlBkd1cm0UHgNOsAsoNIK2qvtgO1JCsDMINMI80mIu6h6kJgEO/Xf8/y5pMgQhOCr01PzvXNtsGeRWutF59BhdAuJH5Pf7rCQcERZG7xG24xssYrmVHgMRh0hhOtEX1w8V3aS0Doz80cL0Ok7XKicc%2BYnUvMhbSq7ZS8myd2rILT22tS%2Bun3/5lbqaUa4p0EvwkuLAUXwFI7UxrTS5qau5pek34nL3xWU9eYq8ofX3pjK6hqgrmh5/J63cH/TOIOSSA%2B8EGdLEmj%2BdYtn%2B16m/Q7r%2BAXLIv3/yPfucAAAAAElFTkSuQmCC'/%3E%0A%3Cpath d='M375.9 1153h65.8m-337.8 19.1H358.3' class='g1'/%3E%0A%3Cpath d='M691.8 252.4h144M498 271.5H618.5' class='g2'/%3E%0A%3Cpath d='M738.1 328.8h97.7M498 347.9H689.4' class='g1'/%3E%0A%3Cpath d='M536.2 405.2H775.3M536.2 538.9H825.4M691.8 615.3h144M498 634.4h78.1m107.6 76.4H835.8M498 729.9H605M498 787.2H761.7m31.7 57.2h42.4M498 863.5H656.9M770 1035.4h65.8M498 1054.5H720.5m72.9 76.4h42.4M498 1150H663.7' class='g2'/%3E%0A%3C/svg%3E)
J. Food Sci. Gastron. (July - December 2025) 3(2): 17-22 21
tion for optimizing formulation. During experimentation
with the optimal formulations, a definitive conclusion could
not be reached because the viscosities did not meet initial
expectations. For this reason, the two response variables cor-
responding to the experiments with the milk ice cream and
cream ice cream blends were optimized to obtain a single
stabilizer formulation applicable to both blends.
As a result of this optimization, a formulation composed
of 16.2% gelatin, 67.9% guar gum, and 15.9% xanthan gum
was obtained, which generated viscosities of 50.8 mPa‧s for
the milk ice cream mixture and 47.3 mPa‧s for the cream ice
cream mixture. This optimal formulation is consistent with
the results obtained in Experiment 11, which presented vis-
cosities of 51.0 mPa‧s for the milk ice cream mixture and
42.7 mPa‧s for the cream ice cream mixture. The viscosity
values, both generated by the model and obtained in Exper-
iment 11, are within the established restriction interval for
both mixtures.
Based on these results, the optimal stabilizer blend was
determined to be composed of gelatin (16.2%), guar gum
(67.9%), and xanthan gum (15.9%). Although gelatin could
have been excluded due to its low gelling power, its pres-
ence contributes to the formation of a stable foam that gives
the ice cream a greater sensation of creaminess, especially in
low-fat milk ice creams. Furthermore, gelatin delays freez-
ing and prevents the formation of large ice crystals, which
improves the final texture of the ice cream. It also decreases
surface tension at the liquid-air interface, strengthening air
retention (overrun) during the freezing process, which is key
to the product’s structure and quality (Gelco, 2013).
Conclusions
The viscosities of the different formulations were de-
termined, and it was observed that gelatin, as a stabilizer,
contributed little to the increase in viscosity in the milk ice
cream mix. In contrast, it showed a stabilizing power similar
to that of xanthan gum in the cream ice cream mix. On the
other hand, guar gum was the stabilizer that demonstrated
the greatest effect for both types of mixes. The optimal for-
mulation for both mixes was composed primarily of gelatin,
with guar gum in a majority proportion and xanthan gum in
a smaller proportion, achieving adequate viscosities for each
type of mix. Furthermore, the cost of the proposed formula-
tion was low, implying a minimal contribution to the total
cost per liter in both types of mixes.
References
Adapa, S., Dingeldein, H., Schmidt, K. A., & Herald, T. J.
(2000). Rheological properties of ice cream mixes and
frozen ice creams containing fat and fat replacers. Jour-
nal of Dairy Science, 83(10), 2224–2229. https://doi.
org/10.3168/jds.S0022-0302(00)75106-X
Alvarado, J., & Aguilera, J. (2001). Métodos para medir
propiedades físicas en industrias de alimentos. Ed.
Acribia, S.A.
Arancibia, C., Bayarri, S., & Costell, E. (2015). Effect
of hydrocolloid on rheology and microstructure of
high-protein soy desserts. Journal of Food Science and
Technology, 52, 6435–6444. https://doi.org/10.1007/
s13197-015-1756-9
Banerjee, S., & Bhattacharya, S. (2012). Food gels: Gelling
process and new applications. Critical Reviews in Food
Science and Nutrition, 52(4), 334–346. https://doi.org/1
0.1080/10408398.2010.500234
Gao, Y., Liu, R., & Liang, H. (2024). Food hydrocolloids:
Structure, properties, and applications. Foods, 13(7),
1077. https://doi.org/10.3390/foods13071077
Karaman, S., Kesler, Y., Goksel, M., Dogan, M., & Kayaci-
er, A. (2014). Rheological and some physicochemical
properties of selected hydrocolloids and their interac-
tions with guar gum: Characterization using principal
component analysis and viscous synergism index. In-
ternational Journal of Food Properties, 17(8), 1655–
1667. https://doi.org/10.1080/10942912.2012.675612
Lin, H.-T. V., Tsai, J.-S., Liao, H.-H., & Sung, W.-C. (2023).
The effect of hydrocolloids on penetration tests and sy-
neresis of binary gum gels and modified corn starch–
gum gels. Gels, 9(8), 605. https://doi.org/10.3390/
gels9080605
Liu, X., Sala, G., & Scholten, E. (2023). Role of polysac-
charide structure in the rheological, physical and sen-
sory properties of low-fat ice cream. Current Research
in Food Science, 7, 100531. https://doi.org/10.1016/j.
crfs.2023.100531
Marshall, R. T., Goff, H. D., & Hartel, R. W. (2003). Ice
cream (6th ed.). Kluwer Academic/Plenum Publishers.
https://doi.org/10.1007/978-1-4615-0163-3
Milliatti, M. C., & Lannes, S. C. da S. (2018). Impact of
stabilizers on the rheological properties of ice creams.
Food Science and Technology, 38(4), 733–739. https://
doi.org/10.1590/fst.31818
NC-ISO 3728. (2004). Helado-Determinación del contenido
de sólidos totales (método de referencia).
NC-ISO 7328. (2004). Helados listos para el consumo y mez-
clas de helados. Determinación del contenido de mate-
ria grasa. Método gravimétrico (método de referencia).
Ramos-Maldonado, F. L., Hernández-Montoya, M. I., &
Rojas-Reyes, N. (2023). Rheological modeling of cel-
lulose gum, xanthan gum, and guar gum mixtures in
aqueous solutions. DYNA, 90(229), 66–74. https://doi.
org/10.15446/dyna.v90n229.109644
Ranaweera, H., Krishnan, P., & Martínez-Monteagudo, S. I.
(2022). Rheological behavior of ice-cream mixes: Im-
pact of temperature and protein concentration. Journal
of Food Process Engineering, 45(3), e13989. https://
doi.org/10.1111/jfpe.13989
Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thick-