'%3E%0A%3Cg clip-path='url(%23c0)' opacity='0.5'%3E%0A%3Cpath d='M73.6 85H835.8' class='g0'/%3E%0A%3C/g%3E%0A%3C/g%3E%0A%3Cimage preserveAspectRatio='none' x='74' y='1205' width='107' height='30' href='data:image/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAGsAAAAeCAMAAAAcjhBMAAAC%2BlBMVEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/gAD1kADzkwD0jwCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoiwD4lQD3lAD2lAD4lgD4lgAAAAAAAAAAAAAAAAAAAAD5lQD2lAD4lQD3lgAAAAAAAAAAAAAAAAAAAAAAAAAAAADzjADvkgD3jwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/AAD1kwDwkwD/gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqlQD6lwD3lQD4lgD/lQAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4lQD2kwD2lAD4lQDyjAAAAAAAAAAAAAAAAAAAAAD/gAD1kgDzkQD5kwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0H799AAAA/nRSTlOHhXJIDQBEJl%2BAEQfU%2BO%2ByYAlkgQqEYxttqt/38sqORwT//uMTINjCJLvzErp27P29L/b77s4isfEfBZigyAy5iu3EvOLmMM0UFxYePcwIhjn6GgtT28YDyTF1AjVAMAK/kZIB/EZN0gvZ/f36S38CwPkV2PzyP4L0KGJRrycqMSDHsFy3IWY/D%2BTqk6uoqbPnfdMpLNpqLaLBWVZYg9FA6R1pm5Z%2BSvABGiEIOGe13JUyc1rD6wzS88MMBtV71jw7Ut///%2BMUnUtMXZoETVgoetDXNuU1ixisa5fhtJCJz5yP3RzZEGi2DiUZfCp4eWFvjIh0bk5UcWV3SUOlOrWMzFoAAARmSURBVHjaxZZpeBNFGIC3x2ivUNME6KXm24LQQC0mUkpAWqS1tECxTUtovICt4oGJqUcqLWpVaMUgJFxWLFprPUEKiFeReivgEQSvggVEDguCN3g9j7Mz2WQC2W7rD31/ZCbfTPbdzHxzcJyPsPCISOTjLI47GwWI4qJjEIqNU0n0iz9H7W9N4DRqxKLtzw2Q6gMTk5JTUs8973wd/sKlgASfphlEe0QDRDA/jofUwQipLwCGIUOl1nTQxwS5hqlgOK3pMi70dc8ccRF2GcB4sUhqJg6NzPK5eNY1CrJHI2TSjJEYi7WXjPO1DofU01wpkENrufiR4y8dNSGPB8i/THQVTCwsLCyaNLl/P4Ap42RdLMVTeQhXdF2ugpKppbhiLisHmGbBrulSp4pkAKus64orr5K4%2BhrdDBii6JoJMEugsaH5UHkt60LXGWG2Ts51/Q03%2Brhpzs3IBmlaBZf9FnBUSEE8nPFBLvtsMFTJum69TeL2O5AT0swKLss0qPZn0J0D5tYEuVAtVM6THcO77pa4BxXXKY%2BhcC/AfWxDsOt%2BMM7vTW7EjAVYoDhfiTj76uVcDQ/AQq2cK/ZBlytpEeYh1%2BIlACnuLCVXgwdAlRS1VBfK5QaoFeRc5nIIZnyCoLC%2BlnnEfobli1as1AW71BkGUNXL5nzxwyMCzGj0OMCYoOBCw8I9KvJexrpHLKKrfNWjmLlNq/E2lYt6tZZFHlsOjzcruHBqr3yipU6P9w3%2BSR12AS8i2lVuOrStAE8FuZ6ehNAzzz7H8jxaY4S1ii6S/FVlL/DAzxJdFMe6tvW%2Bxg0AGwNddS/CpiKEXnr5FZZXX2vfDG29com61/Gfwa4tHfWYN%2BaZ/S1vAtiYBF8IcXbseutthnfefc9UAO/35Ir5YGtFYAfNI67pZ0xFlh7iAmfSNoDtuPjwo49ZPkGD9eDtybWMhx12f/RTGRdaDLxGkI67LVA5%2BcwuqCoHHDt7cml3QeYKKbjTIOf6rBqMn39B8qgDp%2BeX4uuZvnL7idZoOnfjXZzmfLbMfDnx2vJOJNU1m/F5FdqF1joANu35uquloARgL7Ga1522ljP3aamr0rNDwmVnXOoc3Cs/fn9XZx1eZd%2BUyrjQKv%2BTS1wH6C8b0xjyvk2qsfv2KIbVrAsdnKn3XzCmrEfchPS2UC7UcOjwLoMq29PZIU2cYGERpHBXOsN27DpyOL1Lesp3tsYlBkd1cm0UHgNOsAsoNIK2qvtgO1JCsDMINMI80mIu6h6kJgEO/Xf8/y5pMgQhOCr01PzvXNtsGeRWutF59BhdAuJH5Pf7rCQcERZG7xG24xssYrmVHgMRh0hhOtEX1w8V3aS0Doz80cL0Ok7XKicc%2BYnUvMhbSq7ZS8myd2rILT22tS%2Bun3/5lbqaUa4p0EvwkuLAUXwFI7UxrTS5qau5pek34nL3xWU9eYq8ofX3pjK6hqgrmh5/J63cH/TOIOSSA%2B8EGdLEmj%2BdYtn%2B16m/Q7r%2BAXLIv3/yPfucAAAAAElFTkSuQmCC'/%3E%0A%3Cpath d='M73.6 222.1H186.2m0 0h83.4m0 0H354m0 0h82.3M73.6 256.8H186.2m0 0h83.4m0 0H354m0 0h82.3M73.6 499.3H186.2m0 0h83.4m0 0H354m0 0h82.3M73.6 559.6H238.2m0 0h71.4m0 0H441.7M73.6 594.3H238.2m0 0h71.4m0 0H441.7M73.6 719.8H238.2m0 0h71.4m0 0H441.7' class='g1'/%3E%0A%3Cpath d='M579.6 316.3H835.8M498 335.4H685.2M770 411.8h65.8M498 430.9H682.8M770 526.4h65.8M498 545.5H690.8m-7.1 133.6H835.8M498 698.2H628.6m55.1 95.5H835.8M498 812.8H639.3m52.5 95.5h144M498 927.4H626.2M498 984.7H813.6M770 1156.6h65.8M498 1175.7H673.8' class='g2'/%3E%0A%3C/svg%3E)
J. Food Sci. Gastron. (January - June 2026) 4(1): 10-16 15
final Hu of the product to 9.48% (Patel et al., 2020; Berninger
et al., 2021).
Table 3. Constraints for optimizing the dye production
process
Parameter(%)
Minimum
limit
Maximum
limit
Criterion
Maltodextrin 5 9 Maximize
Modified starch 5 9 Minimize
Xanthan gum 0 2 Maximize
Encapsulation
efficiency
61.0 85.7 Maximize
Humidity 7.9 10.1 Minimize
Hygroscopicity 16.0 22.0 Minimize
Solubility 83.9 88.6 Maximize
Table 4. Physical and chemical indicators of the optimal
dye obtained
Parameter Mean
Standar
deviation
Encapsulation
efficiency (%)
83.67 0.09
Humidity (%) 9.48 0.02
Hygroscopicity (%) 17.98 0.14
Solubility (%) 90.23 0.36
The optimal formulation yielded a Hy of 17.98%, a
moderate value suggesting that XG stabilized the product
against RH variations without increasing its absorption.
Unlike other hygroscopic polysaccharides, XG is not
particularly hygroscopic (Berninger et al., 2021), regulating
internal Hu and water-powder balance.
Due to its high solubility and ability to form viscous
solutions, XG improves the dispersion of powders in
water, especially in low proportions (Nsengiyumva &
Alexandridis, 2022). In the optimal formulation, a Sol of
90.23% was obtained, higher than estimated, showing that
XG did not limit but rather favored the dissolution of the
active components.
Conclusions
Xanthan gum proved to be a key component in contro-
lling the physicochemical properties of the powdered dye
obtained. Its use in combination with other encapsulants op-
timized encapsulation efficiency, controlled internal moistu-
re, stabilized hygroscopicity, and promoted high solubility.
These effects are directly related to its molecular structure
and rheological behavior, which provide stability without
compromising product functionality.
References
Arencibia, J. A., García, C. L., Morgan, A. D. L., Salas-Oli-
vet, E., García-Beltrán, J. A., & Casanova, R. M.
(2023). Optimización del proceso de extracción de an-
tocianinas y polifenoles a partir de las flores de Hibis-
cus rosa-sinensis L. Ciencia y Tecnología de Alimentos,
33(3), 1-11. https://revcitecal.iiia.edu.cu/revista/index.
php/RCTA/es/article/view/690
Berninger, T., Dietz, N., & González López, Ó. (2021).
Water‐soluble polymers in agriculture: xanthan gum
as eco‐friendly alternative to synthetics. Microbi-
al Biotechnology, 14(5), 1881-1896. https://doi.
org/10.1111/1751-7915.13867
Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-
Vidal, J. (2005). Effect of the carriers on the microstruc-
ture of mango powder obtained by spray drying and its
functional characterization. Innovative Food Science
& Emerging Technologies, 6(4), 420-428. https://doi.
org/10.1016/j.ifset.2005.05.003
da Rosa, J. R., Nunes, G. L., Motta, M. H., Fortes, J. P., Weis,
G. C. C., Hecktheuer, L. H. R., Muller, E. I., Ragag-
nin, C., & da Rosa, C. S. (2019). Microencapsulation
of anthocyanin compounds extracted from blueberry
(Vaccinium spp.) by spray drying: Characterization, sta-
bility and simulated gastrointestinal conditions. Food
hydrocolloids, 89, 742-748. https://doi.org/10.1016/j.
foodhyd.2018.11.042
de Moura, J. S., Berling, C., Germer, S. P. M., Alvim, I. D.,
& Hubinger, M. D. (2018). Encapsulating anthocyanins
from Hibiscus sabdariffa L. calyces by ionic gelation:
Pigment stability during storage of microparticles. Food
Chemistry, 241, 317–327. https://doi.org/10.1016/j.
foodchem.2017.08.095
Gaibor, F. M., Rodríguez, D., García, M. A., Peraza, C. M.,
Vidal, D., Nogueira, A., & Casariego, A. (2022). De-
velopment of a food colorant from Syzygium cumini L.
(Skeels) by spray drying. Journal of Food Science and
Technology, 59, 4045-4055. https://doi.org/10.1007/
s13197-022-05454-9
Gutiérrez, H., & De la Vara, R. (2012). Análisis y diseño de
experimentos (3.ª ed.). México, D.F.: McGraw-Hill.
https://bibliotecadigital.uce.edu.ec/s/L-D/item/1166
Lee, J., Durst, R. W., Wrolstad, R. E., Eisele, T., Giusti, M.
M., Hach, J., Hofsommer, H., Koswig, S., Krueger, D.
A., Kupina, S., Martin, S., Martinsen, S. K., Miller,
T. C., Paquette, F., Ryabkova, A., Skrede, G., Trenn,
U., & Wightman, J. D. (2005). Determination of to-
tal monomeric anthocyanin pigment content of fruit
juices, beverages, natural colorants, and wines by the
pH differential method: collaborative study. Journal
of AOAC international, 88(5), 1269-1278. https://doi.
org/10.1093/jaoac/88.5.1269