Desarrollo de películas a base de celulosa extraída de tallos de rosas
con potencialidades para la conservación de alimentos
J. Food Sci. Gastron. (January - June 2025) 3(1): 16-21
https://doi.org/10.5281/zenodo.14610531
ISSN: 3073-1283
ORIGINAL ARTICLE
Development of cellulose-based films from rose stems
with potential for food preservation
Augusta Jiménez-Sánchez
dolores.jimenezs@ug.edu.ec
Facultad de Ingeniería Química, Universidad de Guayaquil, Ecuador.
Received: 3 September 2024 / Accepted: 12 December 2024 / Published online: 31 January 2025
© The Author(s) 2025
Augusta Jiménez-Sánchez
·
Hillary Cabezas-Rodríguez
·
Romina Acurio-Rocafuerte
Abstract Flower production in Ecuador generates a large
amount of waste stems. This study aimed to develop bio-
plastics from rose stems using polyvinyl alcohol (PVA) and
corn starch to minimize the use of plastic bags. Cellulose
microbers were obtained through acid and basic hydrolysis
and then used to produce bioplastics through a wet method.
Mixtures of cellulose-PVA and cellulose-starch were made,
resulting in 24 formulations. The lms were evaluated for
moisture, opacity, thickness, water vapor permeability, and
degradability. The raw material contained 48.45% cellu-
lose, 60.64% moisture, 28.28% lignin, and 3.63% ash. The
thickness of the bioplastics met the specied standard. The
PVA-based bioplastics showed higher water absorption and
greater degradability, while the starch-based bioplastics were
more opaque than the others. The formulation for producing
bags would depend on the intended application.
Keywords biolms, cellulose, polyvinyl alcohol, corn
starch, characterization.
Resumen La producción de ores en Ecuador genera una
gran cantidad de desechos, especícamente los tallos. El
objetivo del presente trabajo fue desarrollar biopelículas a
partir de tallos de rosas con alcohol polivinílico (PVA) y al-
midón de maíz como envases para minimizar el uso de las
fundas plásticas. Los microlamentos de celulosa se obtu-
vieron mediante hidrólisis ácida y básica, con los cuales se
produjeron las biopelículas mediante el método húmedo. Se
realizaron mezclas de celulosa-PVA y celulosa-almidón, con
un total de 24 formulaciones. A las películas se le evaluó
la humedad, opacidad, espesor, permeabilidad al vapor de
agua y degradabilidad. La materia prima presentó 48,45 %
de celulosa, 60,64 % de humedad, 28,28 % de lignina y 3,63
% de ceniza. El espesor de las biopelículas cumplió con lo
establecido en la norma. Las biopelículas compuestas por
PVA presentaron mayor absorción de agua y mayor degrada-
bilidad, mientras que las compuestas de almidón mostraron
mayor opacidad. La formulación a utilizar para la obtención
de fundas dependería de la aplicación en la que se utilizaría.
Palabras clave biopelículas, celulosa, alcohol polivinílico,
almidón de maíz, caracterización.
How to cite
Jiménez-Sánchez, A., Cabezas-Rodríguez, H., & Acurio-Rocafuerte, R. (2025). Development of cellulose-based lms from rose stems with potential for food
preservation. Journal of Food Science and Gastronomy, 3(1), 16-21. https://doi.org/10.5281/zenodo.14610531
J. Food Sci. Gastron. (January - June 2025) 3(1): 16-2117
Introduction
The oricultural activity in Ecuador began 30 years ago
(Sozoranga & Vélez, 2016) and has become one of the
country’s main agricultural products, alongside bananas
and cocoa. The oriculture sector ranks third globally as an
exporter (Camino-Mogro et al., 2016). The rose is the most
produced ower, with an area of 4,282 hectares in annual
production, of which 935 hectares are open-eld crops, and
the rest are greenhouse crops. The primary residue generated
is the stems, with an annual production of 2,557,870,384 cut
stems (ESPAC, 2020). These residues can be transformed
into a solution for environmental pollutants if converted into
value-added products.
In Ecuador, petroleum and non-petroleum income sources
are key to the country’s economy. The main non-petroleum
exports are cocoa, bananas, shrimp, and owers, contrib-
uting to the Gross Domestic Product (GDP) (Freire et al.,
2018). The increase in production costs and the economic
crisis caused by the depreciation of international markets af-
fected the sector (Poveda, 2021). The COVID-19 pandemic
in 2020 impacted various areas, including oriculture, due
to a mandatory reduction in exports (Morocho et al., 2021).
Regarding plastic management, they have a complex re-
cycling process. In Ecuador, approximately 261,778 tons of
soft plastic waste are generated (López & Miranda, 2024).
Many of these plastics end up as pollution in landlls, high-
lighting the need for alternative solutions. One option is
biodegradable plastics based on polymers, such as cellulose
combined with polyvinyl alcohol (PVA) and starch, which
the environment can absorb as they break down into CO
2
,
water, or biomass (Avellán et al., 2020).
Conventional plastics derived from petroleum do not de-
grade quickly in the environment, thus contributing to envi-
ronmental pollution (Ponce & Zambrano, 2019). This article
addresses the need to reduce plastic and ower waste pol-
lution. This research aimed to develop biodegradable lms
from rose stems with potential applications for food preser-
vation.
Materials and methods
The stems generated at the Guayaquil Flower Market were
quantied weekly for 15 days, classifying them according to
the leading sales. The rose stems’ moisture content, ash, cel-
lulose, and lignin were determined. Cellulose extraction was
carried out through alkaline and acidic hydrolysis, following
the procedures of Jiménez et al. (2019).
The bioplastic was prepared using the molding method,
with 24 formulations and a two-factor design, to determine
the eectiveness of the mixtures. To characterize the bio-
lms, the thickness, water vapor permeability, opacity, water
absorption, water contact angle, and biodegradability were
evaluated (Kwok & Neumann, 1999; Vicentini, 2003; Joaqui
& Villada, 2013).
The biodegradability percentage of the biolms was de-
termined through a humus degradation experiment, in which
external factors such as pH and humidity were controlled.
Then, the loss due to degradation was calculated.
Results and discussion
Table 1 shows the results of the characterization of rose
stems. During the raw material’s collection and storage
phases, moisture loss occurred, leading to the concentration
of lignocellulosic components, which may explain the dier-
ences between the results and the reference values.
Table 1. Composition of rose stems
Indicator Percentage Reference
Moisture 60.64 65.3 % (González et al., 2016)
Ash 3.63 3.45 % (Rincón, 2020)
Cellulose 48.45 45-50 % (González et al., 2016)
Lignin 28.28 20-25 % (González et al., 2016)
The bioplastics composed of 10 µm cellulose and PVA
were softer, more manageable, and translucent than the cel-
lulose-starch formulations. The lms with 200 µm cellulose
were discarded due to their paper-like characteristics. Ac-
cording to the INEN 2636 standard (2012), all formulations
met the thickness requirement (0.25 mm). The formulations
with the thinnest thickness were the cellulose-PVA lms,
while the thickest were the cellulose-starch lms.
As seen in Figure 1, the bioplastics with 10 µm cellulose
and starch, at concentrations of 20 and 60 mL, showed sim-
ilar moisture content. In the case of the bioplastics with 200
µm, the moisture was similar for the 10 and 20 mL concen-
trations. Both treatments exhibited similar behavior regard-
less of concentration and thickness.
J. Food Sci. Gastron. (January - June 2025) 3(1): 16-21 18
The PVA content aected the water vapor permeability of the cellulose-PVA bioplastics. As shown in Figure 2, the mean
water vapor permeability of the bioplastics composed of cellulose and starch at 10 and 200 µm showed similarities; the vari-
ation in volumes did not aect this property.
Figure 1. Moisture of 10 and 200 µm cellulose and starch bioplastics. The error bars represent the condence interval of the
mean (95% condence). The pooled standard deviation was used to calculate the intervals.
Figure 2. Water vapor permeability of cellulose and starch bioplastics at 10 and 200 µm. The error bars represent the con-
dence interval of the mean (95% condence). The pooled standard deviation was used to calculate the intervals.
The PVA and cellulose content and their combination aected water absorption in cellulose-PVA bioplastics. Dierent be-
haviors were observed for the cellulose and starch bioplastics of 10 and 200 µm, as shown in Figure 3.
Figure 3. Mean water absorption of 10 and 200 µm cellulose and starch bioplastics. The error bars represent the condence
interval of the mean (95% condence). The pooled standard deviation was used to calculate the intervals.
J. Food Sci. Gastron. (January - June 2025) 3(1): 16-2119
The content of PVA and cellulose and their combination aected the water contact angle of the cellulose and starch bioplas-
tics. Figure 4 shows signicant dierences in the water contact angles of the 10 and 200 µm cellulose and starch bioplastics
about the amount of cellulose.
Figure 4. Water contact angle of cellulose and starch bioplastics a) 10 µm and b) 200 µm. The error bars represent the con-
dence interval of the mean (95% condence). The pooled standard deviation was used to calculate the intervals.
The factors that aected the opacity of the cellulose-PVA bioplastics were the PVA content and the combination of PVA and
cellulose. Figure 5 shows the dierences in opacity of the 10 and 200 µm cellulose and starch bioplastics. Among the 10 µm
thick lms, those containing 60 mL of cellulose showed higher opacity, while for the 200 µm lms, those with 15 and 20 mL
of cellulose exhibited higher opacity.
Figure 5. Opacity of cellulose and starch bioplastics: a) 10 µm and b) 200 µm. The error bars represent the condence inter-
val of the mean (95% condence). The pooled standard deviation was used to calculate the intervals.
J. Food Sci. Gastron. (January - June 2025) 3(1): 16-21 20
During the biodegradability study, the bioplastics gained weight in the rst three weeks, related to their water absorption
property. After this period, a progressive weight loss was observed (Figure 6).
Figure 6. Biodegradability of the bioplastics.
Conclusions
The lignocellulosic content of the stems allows them to
produce biopolymers. The formulations with corn starch
showed lower water absorption. All formulations were hy-
drophilic, with water drop angles below 90°. Opacity was
higher in formulations containing starch. FTIR spectra
showed characteristic peaks in the formulations with PVA
and starch. The formulations with PVA showed greater de-
gradability, although all formulations lost weight over time.
The bags can be manufactured from any formulation based
on the desired properties; formulations with PVA are ideal
for greater degradability and translucency, while those con-
taining corn starch are better for resistance, lower degrad-
ability, and water absorption.
References
Camino-Mogro, S., Andrade-Díaz, V., & Pesántez-Villacís,
D. (2016). Posicionamiento y eciencia del banano,
cacao y ores del Ecuador. Ciencia UNEMI, 9(19), 48-
53. https://ojs.unemi.edu.ec/index.php/cienciaunemi/
article/view/323
ESPAC. (2020). Encuesta de Supercie y Producción Agro-
pecuaria Continua. https://www.ecuadorencifras.gob.
ec/encuesta-de-superficie-y-produccion-agropecuar-
ia-continua-2020/
Freire, C., Govea, K., & Arguello, J. (2018). Importancia de
la agricultura en una economía dolarizada Importance
of agriculture in a dollarized economy. Revista Espa-
cios, 39(16), 1- 11. https://www.revistaespacios.com/
a18v39n16/a18v39n16p01.pdf
González, K.D., Daza, D., & Caballero, P.A. (2016). Evalu-
ación de las propiedades físicas y químicas de resid-
uos sólidos orgánicos a emplearse en la elaboración
de papel. Revista Luna Azul, 43, 499-517. https://doi.
org/10.17151/luaz.2016.43.21
INEN 2636 (2012). Norma Técnica Ecuatoriana. Termi-
nología Relativa a Plásticos Degradables. https://www.
normalizacion.gob.ec/buzon/normas/2636.pdf
Jiménez, A., Hernández, K.L., Collahuazo-Reinoso, Y.,
Avilés, R., Pino, J.A., & García, M.A. (2019). Película
comestible a partir de cáscara de plátano macho (Musa
paradisiaca L.). Ciencia y Tecnología de Alimentos,
29(3), 49-57. https://revcitecal.iiia.edu.cu/revista/in-
dex.php/RCTA/article/view/76
Joaqui, D., & Villada, S. (2013). Propiedades ópticas y per-
meabilidad de vapor de agua en películas producidas
a partir de almidón. Biotecnología en el Sector Agro-
pecuario y Agroindustrial, 11(spe), 59-68. http://www.
scielo.org.co/pdf/bsaa/v11nspe/v11nespa07.pdf
J. Food Sci. Gastron. (January - June 2025) 3(1): 16-2121
Kwok, D.Y., & Neumann, A.W. (1999). Contact angle mea-
surement and contact angle interpretation. Advances in
Colloid and Interface Science, 81(3), 167-249. https://
doi.org/10.1016/S0001-8686(98)00087-6
Avellán, A., Díaz, D., Mendoza, A., Zambrano, M., Zamora,
Y., & Riera, M.A. (2020). Obtención de bioplástico a
partir de almidón de maíz (Zea mays L.) Revista Colón
Ciencias, Tecnología y Negocios, 7(1). http://portal.
amelica.org/ameli/jatsRepo/215/215974004/index.html
Poveda, L.M. (2021). Sector orícola ecuatoriano y afectación
en mercado internacional a causa del covid19: Ecuador-
ian ower sector and impact on the international market
due to covid19. South Florida Journal of Development,
2(3), 46094621. https://doi.org/10.46932/sfjdv2n3-061
López, A.L., & Miranda, X. (2024). Análisis jurídico de la
valoración de la prueba en base a las relglas de la sana
crítica. Revista Multidisciplinaria de Investigación
Cientíca, 8(50), 15-25. https://www.revistaespirales.
com/index.php/es/article/download/867/863
Morocho-Aguirre, N.D., Cisneros-Aliaga, M.B., & So-
to-Gonzalez, C.O. (2021). El COVID-19 y su impacto
nanciero en el sector orícola ecuatoriano. Análisis
comparativo. 593 Digital Publisher CEIT, 6(3), 146-
157. https://doi.org/10.33386/593dp.2021.3.553
Ponce, J.S., & Zambrano, D.A. (2019). Estudio de comer-
cialización e industrialización en el uso de polímeros
vegetales para la elaboración de plásticos biodegrad-
ables. Universidad San Francisco de Quito. https://re-
positorio.usfq.edu.ec/bitstream/23000/8627/1/144282.
pdf
Rincón, S.N. (2020). Aprovechamiento de biomasa lig-
nocelulósica proveniente de rosas utilizando el
proceso organosolv Aprovechamiento de biomasa
lignocelulósica proveniente de rosas utilizando el pro-
ceso organosolv. Universidad Nacional de Colom-
bia. https://repositorio.unal.edu.co/bitstream/handle/
unal/78589/1032442447.2020.pdf
Sozoranga, H., & Vélez, M.G. (2016). La Floricultura en
el Ecuador. Revista Caribeña de Ciencias Sociales.
https://www.eumed.net/rev/caribe/2016/10/oricultura.
html
Vicentini, M. (2003). Elaboração e caracterização de lmes
comestíveis à base de fécula de mandioca para uso
em pós-colheita. Universidade Estadual Paulista Júlio
de Mesquita Filho. https://repositorio.unesp.br/han-
dle/11449/103261
Conicts of interest
e authors declare that they have no conicts of interest.
Author contributions
Conceptualization: Augusta Jiménez-Sánchez. Data cu-
ration: Hillary Cabezas-Rodríguez, Romina Acurio-Roca-
fuerte. Formal analysis: Hillary Cabezas-Rodríguez, Romi-
na Acurio-Rocafuerte. Research: Augusta Jiménez-Sánchez,
Hillary Cabezas-Rodríguez, Romina Acurio-Rocafuerte.
Methodology: Augusta Jiménez-Sánchez. Software: Au-
gusta Jiménez-Sánchez. Supervision: Augusta Jiménez-Sán-
chez. Validation: Augusta Jiménez-Sánchez. Visualization:
Hillary Cabezas-Rodríguez, Romina Acurio-Rocafuerte.
Writing the original draft: Augusta Jiménez-Sánchez, Hil-
lary Cabezas-Rodríguez, Romina Acurio-Rocafuerte. Writ-
ing, review and editing: Augusta Jiménez-Sánchez, Hillary
Cabezas-Rodríguez, Romina Acurio-Rocafuerte.
Data availability statement
The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
Statement on the use of AI
The authors acknowledge the use of generative AI and AI-as-
sisted technologies to improve the readability and clarity of
the article.
Disclaimer/Editor’s note
The statements, opinions, and data contained in all publica-
tions are solely those of the individual authors and contrib-
utors and not of Journal of Food Science and Gastronomy.
Journal of Food Science and Gastronomy and/or the editors
disclaim any responsibility for any injury to people or prop-
erty resulting from any ideas, methods, instructions, or prod-
ucts mentioned in the content.