Microencapsulación de compuestos bioactivos en la industriaalimentaria

Autores/as

DOI:

https://doi.org/10.5281/zenodo.14816620

Palabras clave:

microencapsulación, compuestos bioactivos, microorganismos probióticos, estabilidad, liberación controlada, industria alimentaria

Resumen

La microencapsulación de compuestos bioactivos es una tecnología ampliamente utilizada en la industria alimentaria para proteger y mejorar la funcionalidad de ingredientes bioactivos como vitaminas, antioxidantes, probióticos y ácidos grasos esenciales. Este proceso implica encapsular partículas bioactivas en una matriz, generalmente de polímeros naturales o sintéticos, formando microcápsulas que mejoran la estabilidad, liberación controlada y biodisponibilidad de los compuestos. Entre las técnicas más empleadas destacan el spray-drying, coacervación y extrusión, seleccionadas según las propiedades del compuesto a encapsular y las aplicaciones deseadas. Estas tecnologías permiten proteger los compuestos sensibles frente a factores adversos como la oxidación, la humedad, la luz o el pH extremo durante el procesamiento y almacenamiento de alimentos. La microencapsulación facilita la liberación controlada de los compuestos bioactivos en el momento y lugar adecuado, mejorando su efectividad en el organismo, propiedad esencial en los alimentos funcionales y nutracéuticos. El objetivo de esta revisión fue analizar las técnicas de microencapsulación utilizadas en la industria alimentaria para proteger y mejorar la funcionalidad de compuestos bioactivos, como vitaminas, antioxidantes, probióticos y ácidos grasos esenciales.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abka-Khajouei, R., Tounsi, L., Shahabi, N., Patel, A. K., Abdelkafi, S., & Michaud, P. (2022). Structures, Properties and Applications of Alginates. Marine Drugs, 20(6), 364. https://doi.org/10.3390/md20060364

Adhikari, K., Mustapha, A., & Grün, I. U. (2003). Survival and Metabolic Activity of Microencapsulated Bifidobacterium longum in Stirred Yogurt. Journal of Food Science, 68(1), 75-280. https://doi.org/10.1111/j.1365-2621.2003.tb14152.x

Adhikari, K., Mustapha, A., Grün, I. U., & Fernando, L. (2000). Viability of Microencapsulated Bifidobacteria in Set Yogurt During Refrigerated Storage. Journal of Dairy Science, 83, 1946–1951. https://doi.org/10.3168/jds.S0022-0302(00)75070-3

Agriopoulou, S., Tarapoulouzi, M., Varzakas, T., & Jafari, S. M. (2023). Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms, 11(12), 2896. https://doi.org/10.3390/microorganisms11122896

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers (Basel), 13(19), 3256. https://doi.org/10.3390/polym13193256

Arebo, M. A., Feyisa, J. D., Tafa, K. D., & Satheesh, N. (2023). Optimization of spray-drying parameter for production of better quality orange fleshed sweet potato (Ipomoea batatas L.) powder: Selected physiochemical, morphological, and structural properties. Heliyon, 9(1), e13078. https://doi.org/10.1016/j.heliyon.2023.e13078

Ayyaril, S. S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., Shabib, A. G., & Khan, M. I. (2023). Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results in Engineering, 18, 101094. https://doi.org/10.1016/j.rineng.2023.101094

Bamidele, O. P., & Emmambux, M. N. (2020). Encapsulation of bioactive compounds by “extrusion” technologies: a review. Critical Reviews in Food Science and Nutrition, 61(18), 3100–3118. https://doi.org/10.1080/10408398.2020.1793724

Calderón-Oliver, M., & Ponce-Alquicira, E. (2022). The Role of Microencapsulation in Food Application. Molecules, 27(5), 1499. https://doi.org/10.3390/molecules27051499

Călinoiu, L. F., Ştefănescu, B. E., Pop, I. D., Muntean, L., & Vodnar, D. C. (2019). Chitosan Coating Applications in Probiotic Microencapsulation. Coatings, 9(3), 194. https://doi.org/10.3390/coatings9030194

Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freezedried yoghurt. Food Research International, 39(2), 203-211. https://doi.org/10.1016/j.foodres.2005.07.007

Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426-442. https://doi.org/10.1002/fft2.94

Donthidi, A. R., Tester, R. F., & Aidoo, K. E. (2010). Effect of lecithin and starch on alginate-encapsulated probiotic bacteria. Journal of Microencapsulation, 27(1), 67–77. https://doi.org/10.3109/02652040902982183

Drozłowska, E., Starowicz, M., Śmietana, N., Krupa-Kozak, U., & Łopusiewicz, Ł. (2023). Spray-Drying Impact the Physicochemical Properties and Formation of Maillard Reaction Products Contributing to Antioxidant Activity of Camelina Press Cake Extract. Antioxidants (Basel), 12(4), 919. https://doi.org/10.3390/antiox12040919

Godward, G., & Kailasapathy, K. (2003). Viability and survival of free and encapsulated probiotic bacteria in Cheddar cheese. Milchwissenschaft: Milk Science International, 58(11-12), 624-627. http://handle.uws.edu.au:8081/1959.7/35106

Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of symbiotic ice cream. Food Chemistry, 111(1), 50–55. https://doi.org/10.1016/j.foodchem.2008.03.036

Hurtado, A., Aljabali, A. A. A., Mishra, V., Tambuwala, M. M., & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications. International Journal of Molecular Sciences, 23(9), 4486. https://doi.org/10.3390/ijms23094486

Iyer, C., & Kailasapathy, K. (2005). Effect of Co-encapsulation of Probiotics with Prebiotics on Increasing the Viability of Encapsulated Bacteria under In Vitro Acidic and Bile Salt Conditions and in Yogurt. Journal of Food Science, 70(1), M18-M23. https://doi.org/10.1111/j.1365-2621.2005.tb09041.x

Jiménez-Gómez, C.P., & Cecilia, J.A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25(17), 3981. https://doi.org/10.3390/molecules25173981

Jurášková, D., Ribeiro, S. C., & Silva, C. C. G. (2022). Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods, 11(2), 156. https://doi.org/10.3390/foods11020156

Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT - Food Science and Technology, 39(10), 1221-1227. https://doi.org/10.1016/j.lwt.2005.07.013

Kailasapathy, K., & Masondole, L. (2005). Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese. The Australian Journal of Dairy Technology, 60(3), 252-258. https://researchdirect.westernsydney.edu.au/islandora/object/uws:983

Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

Kiousi, D. E., Karapetsas, A., Karolidou, K., Panayiotidis, M.I., Pappa, A., & Galanis, A. (2019). Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Nutrients, 11(4), 788. https://doi.org/10.3390/nu11040788

Kowalska, E., Ziarno, M., Ekielski, A., & Żelaziński, T.(2022). Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules, 27(10), 3321. https://doi.org/10.3390/molecules27103321

Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737-743. https://doi.org/10.1016/j.idairyj.2004.01.004

Lakshmi, A. B, Dhanusha, K., Ayisha, S. A., & Vi alakshmi, M. K. (2023). Biodegradable polymers for microencapsulation systems: Review Article. Journal of Pharma Insights and Research, 1(2), 097-107. https://jopir.in/index.php/journals/article/view/43

Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W., Rehman, A., Riaz, T., Aadil, R. M., Khan, I. M., Özogul, F., Rocha, J. M., Esatbeyoglu, T., & Korma, S. A. (2023). Probiotics: mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology, 14, 1216674. https://doi.org/10.3389/fmicb.2023.1216674

Lotfipour, F., Mirzaeei, S., & Maghsoodi, M. (2012). Evaluation of the effect of CaCl2 and alginate concentrations and hardening time on the characteristics of Lactobacillus acidophilus loaded alginate beads using response surface analysis. Advanced Pharmaceutical Bulletin, 2(1):71–78. https://doi.org/10.5681/apb.2012.010

Lukova, P., Katsarov, P., & Pilicheva, B. (2023). Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers, 15(17), 3615. https://doi.org/10.3390/polym15173615

Mahmoud, M., Abdallah, N. A., El-Shafei, K., Tawfik, N. F., & El-Sayed, H. S. (2020). Survivability of alginate- microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6(3), e03541. https://doi.org/10.1016/j.heliyon.2020.e03541

Malektaj, H., Drozdov, A. D., & deClaville C. J. (2023). Mechanical Properties of Alginate Hydrogels Cross-linked with Multivalent Cations. Polymers, 15(14), 3012. https://doi.org/10.3390/polym15143012

Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., & Rotondo, J. C. (2023). Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12(1), 184. https://doi.org/10.3390/cells12010184

McMaster, L. D., & Kokott, S. A. (2005). Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World Journal of Microbiology and Biotechnology, 21, 723-728. https://doi.org/10.1007/s11274-004-4798-0

Meng, Q., Zhong, S., Wang, J., Gao, Y., & Cui, X. (2023). Advances in chitosan-based microcapsules and their applications. Carbohydrate Polymers, 300, 120265. https://doi.org/10.1016/j.carbpol.2022.120265

Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray Drying for the Encapsulation of Oils-A Review. Molecules, 25(17), 3873. https://doi.org/10.3390/molecules25173873

Mortazavian, A. M., Ehsani, M. R., Azizi, A., Razavi, S. H., Mousavi, S. M., Sohrabvandi, S., & Reinheimer, J. A. (2008). Viability of calcium-alginate-microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during refrigerated storage and under simulated gastrointestinal conditions. Australian Journal of Dairy Technology, 63(1), 25-30. https://bit.ly/4fakzTO

Muthukumarasamy, P., & Holley, R. A. (2007). Survival of Escherichia Coli O157:H7 in Dry Fermented Sausages Containing Micro-Encapsulated Probiotic Lactic Acid Bacteria. Food Microbiology, 24, 82-88. https://doi.org/10.1016/j.fm.2006.03.004

Muthukumarasamy, P., Allan-Wojtas, P., & Holley, R. A. (2006). Stability of Lactobacillus reuteri in Different Types of Microcapsules. Journal of Food Science, 71(1), M20-M24. https://doi.org/10.1111/j.1365-2621.2006.tb12395.x

Naveed, M.H., Jan, T., Qureshi, H., & Mumtaz, K. (2021). Significance of Microencapsulation Technology: A review. Journal Advances of Nutrition, Science & Technology, 1(4), 164-179. https://doi.org/10.15228/ANST.2021.v01.i04.p04

Özer, B., Kirmaci, H.A., Şenel, E., Atamer, M., & Hayaloğlu, A. (2009). Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. International Dairy Journal, 19(1), 22-29. https://doi.org/10.1016/j.idairyj.2008.07.001

Özer, B., Uzun, Y. S., & Kirmaci, H. A. (2008). Effect of Microencapsulation on Viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 During Kasar Cheese Ripening. International Journal of Dairy Technology, 61(3), 237-244. https://bit.ly/3OPnvuy

Pattnaik, M., Pandey, P., Martin, G. J. O., Mishra, H. N., & Ashokkumar, M. (2021). Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods, 10(2), 279. https://doi.org/10.3390/foods10020279

Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14(6), 505-515. https://doi.org/10.1016/j.idairyj.2003.10.008

Piekarska, K., Sikora, M., Owczarek, M., Jóźwik-Pruska, J., & Wiśniewska-Wrona, M. (2023). Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers, 15(4), 793. https://doi.org/10.3390/polym15040793

Piñón-Balderrama, C. I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., & Saavedra- Leos, M. Z. (2020). Encapsulation of Active Ingredients in Food Industry by Spray-Drying and Nano Spray-Drying Technologies. Processes, 8(8), 889. https://doi.org/10.3390/pr8080889

Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advantage Nutrition, 10(suppl_1), S49-S66. https://doi.org/10.1093/advances/nmy063

Possemiers, S., Marzorati, M., Verstraete, W., & Van de Wiele, T. (2010). Bacteria and chocolate: a successful combination for probiotic delivery. International Journal of Food Microbiology, 141(1-2), 97-103. https://doi.org/10.1016/j.ijfoodmicro.2010.03.008

Poulson, B. G., Alsulami, Q. A., Sharfalddin, A., El Agammy, E. F., Mouffouk, F., Emwas, A. H., Jaremko, L., & Jaremko, M. (2022). Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides, 3(1), 1-31. https://doi.org/10.3390/polysaccharides3010001

Reid, A. A., Champagne, C. P., Gardner, N., Fustier, P., & Vuillemard, J. C. (2007). Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. Journal of Food Science, 72(1), M031-7. https://doi.org/10.1111/j.1750-3841.2006.00222.x Rios-Aguirre, S., & Gil-Garzón, M. A. (2021). Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión. TecnoLógicas, 24(51), e1836, 2021. https://doi.org/10.22430/22565337.1836

Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111-117. https://doi.org/10.1016/j.foodres.2009.09.010

Shah, N. P., & Ravula, R. R. (2000). Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Australian Journal of Dairy Technology, 55(3), 139-144. https://vuir.vu.edu.au/15337/1/Ravula_2000compressed.pdf

Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal oF Food Microbiology, 62(1-2), 47-55. https://doi.org/10.1016/s0168-1605(00)00380-9

Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. International Journal of Food Microbiology, 61(1), 17-25. https://doi.org/10.1016/s0168-1605(00)00327-5

Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients, 11(7), 1591. https://doi.org/10.3390/nu11071591

Ulrika, W. (2022). Assessing Viability and Stress Tolerance of Probiotics—A Review. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.818468

Vieira, M. V., Pastrana, L. M., & Fuciños, P. (2020). Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine Drugs, 18(12), 644. https://doi.org/10.3390/md18120644

Weinbreck, F., Bodnár, I., & Marco, M. L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? International Journal of Food Microbiology, 136(3), 364-367. https://doi.org/10.1016/j.ijfoodmicro.2009.11.004

Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 26(23), 7136. https://doi.org/10.3390/molecules26237136

Zabot, G. L., Schaefer, F., Polano, O. L, Vinícius, T. M., Herrera, E., Palacin, H., Córdova-Ramos, J. S., Best, I., & Olivera-Montenegro, L. (2022). Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel), 14(19), 4194. https://doi.org/10.3390/polym14194194

Zhang, R., Hoffmann, T., & Tsotsas, E. (2020). Novel Technique for Coating of Fine Particles Using Fluidized Bed and Aerosol Atomizer. Processes, 8(12), 1525. https://doi.org/10.3390/pr8121525

Publicado

2025-01-31

Declaración de disponibilidad de datos

No aplicable.

Número

Sección

Artículos de revisión

Cómo citar

Torres, D., Casariego, A., & García, M. A. (2025). Microencapsulación de compuestos bioactivos en la industriaalimentaria. Journal of Advances in Education, Sciences and Humanities, 3(1), 43-54. https://doi.org/10.5281/zenodo.14816620

Artículos similares

1-10 de 17

También puede Iniciar una búsqueda de similitud avanzada para este artículo.