Gut microbiome: influence on the clinical and nutritional treatment of type 2 diabetes mellitus
DOI:
https://doi.org/10.5281/zenodo.18294243Keywords:
type 2 diabetes mellitus, gut microbiome, prebiotics, probiotics, emerging therapiesAbstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease in whose pathophysiology the gut microbiota plays a key role, influencing systemic inflammation, insulin sensitivity, and glycemic homeostasis, thus conditioning the response to clinical and dietary treatments. The objective of this study was to analyze the influence of the gut microbiota on the pharmacological and dietary treatment of T2DM based on current scientific evidence. This systematic review, conducted according to the 2020 PRISMA guidelines, analyzed 27 studies published between 2014 and 2024, identifying that gut dysbiosis, characterized by a reduction in beneficial bacteria and an increase in pro-inflammatory species, is associated with poorer metabolic control in patients with T2DM. The most effective interventions included probiotics, prebiotics, synbiotics, high-fiber diets, and drugs with microbiota-modulating effects, such as metformin and SGLT2 inhibitors. Evidence suggests that modulation of the gut microbiota represents a promising complementary therapeutic strategy; however, methodological limitations still exist, highlighting the need for more robust clinical studies to support its widespread application.
Downloads
References
Adeshirlarijaney, A., & Gewirtz, A. T. (2020). Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes, 11(3), 253–264. https://doi.org/10.1080/19490976.2020.1717719
Baars, D. P., Fondevila, M. F., Meijnikman, A. S., & Nieuwdorp, M. (2024). The central role of the gut microbiota in the pathophysiology and management of type 2 diabetes. Cell Host & Microbe, 32(8), 1280–1300. https://doi.org/10.1016/j.chom.2024.07.017
Bi, T., Feng, R., Ren, W., & Zhan, L. (2025). ZiBu PiYin recipe regulates Aβ metabolism and improves diabetes-associated cognitive decline. Journal of Ethnopharmacology, 337(Pt 1), 118808. https://doi.org/10.1016/j.jep.2024.118808
Chen, M., Peng, Y., Hu, Y., Kang, Z., Chen, T., Zhang, Y., & Zhang, W. (2025). A critical role for Phocaeicola vulgatus in negatively impacting metformin response in diabetes. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2025.02.008
Chiou, W. C., Chang, B. H., Tien, H. H., Cai, Y. L., Fan, Y. C., Chen, W. J., Chu, H. F., Chen, Y. H., & Huang, C. (2021). Synbiotic intervention with an adlay-based prebiotic and probiotics improved diet-induced metabolic disturbance in mice by modulation of the gut microbiota. Nutrients, 13(9), 3161. https://doi.org/10.3390/nu13093161
Cunningham, A. L., Stephens, J. W., & Harris, D. A. (2021). Gut microbiota influence in type 2 diabetes mellitus (T2DM). Cardiovascular Diabetology, 13(1), 50. https://doi.org/10.1186/s13099-021-00446-0
Davari, S., Talaei, S. A., Alaei, H., & Salami, M. (2013). Probiotics treatment improves diabetes-induced impairment of synaptic activity. Neuroscience, 240, 287–296. https://doi.org/10.1016/j.neuroscience.2013.02.055
Du, Y., Lu, Y., An, Y., & Zheng, J. (2024). Research progress in mechanisms of gut microbiota in diabetic cognitive impairment. Chinese Journal of Gerontology, 44(4), 494–500. https://doi.org/10.3969/j.issn.1674-8115.2024.04.010
Dzięgielewska-Gęsiak, S., Fatyga, E., Piłot, M., Wierzgoń, A., & Muc-Wierzgoń, M. (2022). Are there differences in gut microbiome in patients with type 2 diabetes treated by metformin or metformin and insulin? Diabetes, Metabolic Syndrome and Obesity, 15, 3589–3599. https://doi.org/10.2147/DMSO.S377856
Ebrahimi, S., Rezaei-Tavirani, M., & Arefi Oskouie, A. (2025). Identification of microbiome-derived biomarkers for type 2 diabetes using a machine learning approach. Scientific Reports, 15(1), 3164. https://doi.org/10.1038/s41598-024-57477-2
Estrella, A., Martínez-Sandoval, M., Rodríguez-González, I., & Pérez-Mendoza, M. J. (2024). Modulation of gut microbiota in prediabetes with linagliptin and metformin. Frontiers in Endocrinology, 15, 1313652. https://doi.org/10.3389/fendo.2024.1313652
Fu, Y., Li, S., Xiao, Y., Liu, G., & Fang, J. (2023). A metabolite perspective on the involvement of the gut microbiota in type 2 diabetes. International Journal of Molecular Sciences, 24(19), 14991. https://doi.org/10.3390/ijms241914991
Gallardo, W. D., & García, M. A. (2024). Junk food: analysis of risks, benefits, and social perception. Journal of Food Science and Gastronomy, 2(1), 26-34. https://doi.org/10.5281/zenodo.13996283
Iatcu, O. C., Hamamah, S., & Covasa, M. (2024). Harnessing prebiotics to improve type 2 diabetes outcomes. Nutrients, 16(20), 3447. https://doi.org/10.3390/nu16203447
Kim, H. B., Cho, Y. J., & Choi, S. S. (2024). Metformin increases gut multidrug resistance genes in type 2 diabetes, potentially linked to Escherichia coli. Scientific Reports, 14(1), 21480. https://doi.org/10.1038/s41598-024-72467-z
Lee, S., Eom, S., Lee, J., & Lee, J. H. (2023). Probiotics that ameliorate cognitive impairment through anti-inflammation. Korean Journal for Food Science of Animal Resources, 43(4), 612–624. https://doi.org/10.5851/kosfa.2023.e22
Li, J., Yang, H., Ruan, N., Lin, Y., & Fang, Z. (2024). Causal relationship between intestinal flora and diabetic neuropathy. Chinese Journal of Microbiology and Immunology, 36(7), 761–768. https://doi.org/10.13381/j.cnki.cjm.202407003
Majait, S., Nieuwdorp, M., Kemper, M., & Soeters, M. (2023). The black box orchestra of gut bacteria and bile acids: Who is the conductor? International Journal of Molecular Sciences, 24(3), 1816. https://doi.org/10.3390/ijms24031816
Martínez-Carrillo, C., Salazar, A. M., Sánchez-Ortiz, M., Pérez-López, R., Ramírez-González, D., Orozco, A. V., et al. (2024). Global metagenomic profiling of gut microbiota in type 2 diabetes. BMC Genomics, 25(1), 112. https://doi.org/10.1186/s12864-024-09983-2
Martínez-Carrillo, C., Sánchez-Ortiz, M., Ramírez-González, D., Ramírez-Vargas, G., García-Pérez, R., & Durán-Padilla, M. A. (2024). Impact of carbohydrate consumption on gut microbiota in patients with type 2 diabetes. Nutrients, 16(2), 435. https://doi.org/10.3390/nu16020435
Meloncelli, N., Capurso, C., De Giuseppe, R., & De Girolamo, G. (2023). Diet, gut microbiota and type 2 diabetes. Nutrients, 15(13), 2861. https://doi.org/10.3390/nu15132861
Meroni, M., Longo, M., Paolini, E., & Dongiovanni, P. (2025). Cognitive impairment in metabolic dysfunction–associated steatotic liver disease. Journal of Advanced Research, 68, 231–240. https://doi.org/10.1016/j.jare.2024.02.007
Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER. BMC Health Services Research, 14, 579. https://doi.org/10.1186/s12913-014-0579-0
Mohamed, S. (2024). Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 diabetes mellitus. Medicine, 103(43), e40221. https://doi.org/10.1097/MD.0000000000040221
Murugesan, R., Kumar, J., Leela, K. V., Meenakshi, S., Srivijayan, A., Thiruselvam, S., Satheesan, A., & Chaithanya, V. (2025). The role of gut microbiota and bacterial translocation in the pathogenesis and management of type 2 diabetes mellitus. Physiology & Behavior, 293, 114838. https://doi.org/10.1016/j.physbeh.2025.114838
Negm, S. H. (2023). Novel therapeutic strategies targeting gut microbiota to treat diseases. En Microbiota and human health (pp. 133–141). Wiley. https://doi.org/10.1002/9781119904786.ch12
Ng, C. Y. J., Zhong, L., Ng, H. S., Goh, K. S., & Zhao, Y. (2024). Managing type 2 diabetes mellitus via the regulation of gut microbiota: A Chinese medicine perspective. Nutrients, 16(22), 3935. https://doi.org/10.3390/nu16223935
Oluwaloni, F. O., Yakubu, O. F., Adebayo, A. H., Koyejo, O. D., & Lawal, A. K. (2023). Review of the gut microbiota dynamics in type-2 diabetes mellitus (T2DM): A focus on human-based studies. Tropical Journal of Natural Product Research, 7(6), 3059–3079. https://doi.org/10.26538/tjnpr/v7i6.2
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Palacios, T., Vitetta, L., Coulson, S., Madigan, C. D., Denyer, G. S., & Caterson, I. D. (2017). The effect of a novel probiotic on metabolic biomarkers in adults with prediabetes and recently diagnosed type 2 diabetes mellitus: Study protocol for a randomized controlled trial. Trials, 18(1), 7. https://doi.org/10.1186/s13063-016-1762-x
Pang, S. Q., Luo, Z., Wang, C. C., & Zhang, J. (2020). Effects of Dioscorea polystachya on cognitive function of diabetic rats. Journal of Integrative Neuroscience, 19(2), 273–283. https://doi.org/10.31083/j.jin.2020.02.69
Pizarro, R. R., de Guzman, M., Gururagavendiran, S., Mariados, S. W., Deb, S., & Vivian Allan, R. B. P. (2024). Human microbiome and diabetes. En Advances in clinical chemistry (pp. 69–76). Elsevier. https://doi.org/10.1016/B978-0-443-15435-5.00006-2
Qin, L., Fan, B., Zhou, Y., Zheng, J., Diao, R., Wang, F., & Liu, J. (2025). Targeted gut microbiome therapy: Applications and prospects of probiotics, fecal microbiota transplantation and natural products in the management of type 2 diabetes. Pharmacological Research, 213, 107625. https://doi.org/10.1016/j.phrs.2025.107625
Qu, Q., He, P., Zhang, Y., & Zeng, P. (2024). The intervention of probiotics on type 2 diabetes mellitus in animal models. Molecular Nutrition & Food Research, 68(1), e2200815. https://doi.org/10.1002/mnfr.202200815
Razavi, S., Amirmozafari, N., Zahedi Bialvaei, A., Navab-Moghadam, F., Khamseh, M. E., & Alaei-Shahmiri, F. (2024). Gut microbiota composition and type 2 diabetes. Heliyon, 10(20), e39464. https://doi.org/10.1016/j.heliyon.2024.e39464
Sato, J., Kanazawa, A., & Watada, H. (2017). Type 2 diabetes and bacteremia. Diabetes Therapy, 71(1), 17–22. https://doi.org/10.1159/000479919
Sharma, B. R., Jaiswal, S., & Ravindra, P. V. (2022). Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomedicine & Pharmacotherapy, 152, 113148. https://doi.org/10.1016/j.biopha.2022.113148
Sharma, B., Kumar, A., Sharma, U., Pal, D., & Prashar, S. (2022). The potential role of gut microbiota in the pathogenesis of type 2 diabetes mellitus via epigenetics and inflammasome. Current Pharmaceutical Biotechnology, 22(14), 1331–1343. https://doi.org/10.2174/1871530322666220331152809
Sharma, N., Gupta, P. C., Upadhyay, S., & Pathak, K. (2024). Synbiotics and gut microflora: Mechanisms and therapeutic rationality and clinical applications for management of type 2 diabetes. En Synbiotics in health and disease (pp. 55–67). CRC Press. https://doi.org/10.1201/9781032702438-4
Sikalidis, A. K., & Maykish, A. (2020). The gut microbiome and type 2 diabetes mellitus: Discussing a complex relationship. Biomedicines, 8(1), 8. https://doi.org/10.3390/biomedicines8010008
Singh, S., & Bhadauriya, R. (2025). Gut microbiota modulation in diabetes and its associated complications. European Journal of Pharmacology, 960, 175713. https://doi.org/10.1016/j.ejphar.2024.175713
Sivadas, S., Castelino, R. L., Ajila, V., & Jain, Y. (2025). Gut microflora: The unheeded factor in type 2 diabetes mellitus. Romanian Journal of Diabetes, 32(1), 113–118. https://doi.org/10.46389/rjd-2025-1831
Song, S., Zhang, Q., Zhang, L., Zhou, X., & Yu, J. (2024). A two-sample bidirectional Mendelian randomization analysis investigates associations between gut microbiota and type 2 diabetes mellitus. Frontiers in Endocrinology, 15, 1313651. https://doi.org/10.3389/fendo.2024.1313651
Stepanova, N. (2024). Type 2 diabetes mellitus and the gut microbiota: Charting new territory for sodium-glucose co-transporter 2 inhibitors. European Journal of Medical Oncology, 8(1), 1–8. https://doi.org/10.14744/ejmo.2024.53968
Szymczak-Pajor, I., Drzewoski, J., Kozłowska, M., Krekora, J., & Śliwińska, A. (2025). The gut microbiota-related antihyperglycemic effect of metformin. Pharmaceuticals, 18(1), 55. https://doi.org/10.3390/ph18010055
Tang, Y., Yan, M., Fang, Z., Jin, S., & Xu, T. (2024). Effects of metformin, saxagliptin and repaglinide on gut microbiota in diabetic mice. BMJ Open Diabetes Research & Care, 12(3), e003837. https://doi.org/10.1136/bmjdrc-2023-003837
Valencia-Castillo, S. Y., Hernández-Beza, M. J., Powell-Cerda, I., Acosta-Cruz, E., Rodríguez-Castillejos, G. C., Siller-López, F., & Martínez-Montoya, H. (2025). Impact of gestational diabetes mellitus in gut and human breast milk microbiome. Revista Argentina de Microbiología, 57(1), 14–23. https://doi.org/10.1016/j.ram.2024.10.006
Zhang, H., Ma, L., Peng, W., Wang, B., & Sun, Y. (2024). Association between gut microbiota and onset of type 2 diabetes mellitus. Frontiers in Cellular and Infection Microbiology, 14, 1327032. https://doi.org/10.3389/fcimb.2024.1327032
Zhang, K., Zhang, Q., Qiu, H., Ma, Y., Hou, N., Zhang, J., Kan, C., Han, F., Sun, X., & Shia, J. (2024). The complex link between the gut microbiome and obesity-associated metabolic disorders. Heliyon, 10(17), e37609. https://doi.org/10.1016/j.heliyon.2024.e37609
Zhang, Y., Wang, A., Zhao, W., Qin, J., Liu, B., Yao, C., Long, J., Yuan, M., & Yan, D. (2025). Microbial succinate promotes the response to metformin by upregulating secretory immunoglobulin A in intestinal immunity. Gut Microbes, 17(1), 2450871. https://doi.org/10.1080/19490976.2025.2450871
Published
Data Availability Statement
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Issue
Section
License
Copyright (c) 2026 Alberto J. Cevallos, Edison H. Arévalo, Mauricio G. Intriago (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

































