Análisis integral de la miel de abeja: desde la composición química hasta la caracterización sensorial
DOI:
https://doi.org/10.5281/zenodo.13996987Palabras clave:
miel de abeja, composición química, propiedades organolépticas, análisis sensorial, autenticidad de la mielResumen
La miel de abeja es un producto natural con una compleja composición química que varía según su origen botánico y geográfico. Este artículo ofrece un análisis integral de la miel, abordando su composición química, que incluye azúcares, proteínas, vitaminas, minerales, y compuestos bioactivos, así como su impacto en las propiedades organolépticas. Se examinan las técnicas analíticas utilizadas para determinar la composición química, como la cromatografía y la espectroscopia, destacando su importancia para la autenticidad y calidad de la miel. Además, se exploran los métodos de evaluación sensorial, que permiten caracterizar el sabor, aroma y color de la miel, y cómo estos atributos son influenciados por factores como el origen floral y las condiciones de procesamiento. Finalmente, se discute la relevancia de un enfoque multidimensional para la evaluación de la miel, que integre tanto la composición química como las características sensoriales, contribuyendo así a un mejor entendimiento de su calidad y su potencial como producto funcional en la alimentación y la salud.
Referencias
Abdi, G.G., Tola, Y.B., & Kuyu, C.G. (2024). Assessment of Physicochemical and Microbiological Characteristics of Honey in Southwest Ethiopia: Detection of Adulteration through Analytical Simulation. Journal of Food Protection, 87(1), 100194. https://doi.org/10.1016/j.jfp.2023.100194
Addi, A., & Bareke, T. (2021). Botanical origin and characterization of monofloral honeys in Southwestern forest of Ethiopia. Food Science and Nutrition, 9(9), 4998-5005. https://doi.org/10.1002/fsn3.2453
Al-Kafaween, M.A., Alwahsh, M., Mohd, A.B., & Abulebdah. D.H. (2023). Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel), 12(2), 337. https://doi.org/10.3390/antibiotics12020337
Amariei, S., Norocel, L., & Agripina, L. (2020). An innovative method for preventing honey crystallization. Innovative Food Science & Emerging Technologies, 66, 102481. https://doi.org/10.1016/j.ifset.2020.102481
Anupama, D., Bhat, K.K., & Sapna, V.K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food Research International, 36(2), 183-191 https://doi.org/10.1016/S0963-9969(02)00135-7
Becerril-Sánchez, A.L., Quintero-Salazar, B., Dublán-García, O., & Escalona-Buendía. H.B. (2021). Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel), 10(11), 1700. https://doi.org/10.3390/antiox10111700
Bodor, Z., Benedek, C., Urbin, Á., Szabó, D., & Sipos, L. (2021). Colour of honey: can we trust the Pfund scale? – An alternative graphical tool covering the whole visible spectra. LWT, 149, 111859. https://doi.org/10.1016/j.lwt.2021.111859
Bogdanov, S., Haldimann, M., Luginbühl, W., & Gallmann, P. (2007). Minerals in honey: environmental, geographical and botanical aspects. Journal of Apicultural Research, 46(4), 269-275. https://doi.org/10.1080/00218839.2007.11101407
Burton, I.W., Kompany-Zareh, M., Haverstock, S., Haché, J., Martinez-Farina, C.F., Wentzell, P.D., & Berrué, F. (2023). Analysis and discrimination of Canadian honey using quantitative nmr and multivariate statistical methods. Molecules, 28(4), 1656. https://doi.org/10.3390/molecules28041656
Calaça, P., Schlindwein, C., & Bastos, E.M.A.F. (2018). Discriminating unifloral honey from a dioecious mass flowering tree of Brazilian seasonally dry tropical forest through pollen spectra: consequences of honeybee preference for staminate flowers. Apidologie, 49, 705-720. https://doi.org/10.1007/s13592-018-0597-8
Chang, H., Ding, G., Jia, G., Feng, M., & Huang, J. (2022). Hemolymph Metabolism Analysis of Honey Bee (Apis mellifera L.) Response to Different Bee Pollens. Insects, 14(1), 37. https://doi.org/10.3390/insects14010037
Chen, C. (2019). Relationship between Water Activity and Moisture Content in Floral Honey. Foods, 8(1), 30. https://doi.org/10.3390/foods8010030
Christopher, J.A., Manley-Harris, M., & Molan, P.C. (2009). The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344(8), 1050-1053. https://doi.org/10.1016/j.carres.2009.03.020
Ciursa, P., & Oroian, M. (2021). Rheological behavior of honey adulterated with agave, maple, corn, rice and inverted sugar syrups. Scientific Reports, 11(1), 23408. https://doi.org/10.1038/s41598-021-02951-3
Conti, M.E., Stripeikis, J., Campanella, L., Cucina, D., & Tudino, M.B. (2007). Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chemistry Central Journal, 1, 14. https://doi.org/10.1186/1752-153X-1-14
Erban, T., Shcherbachenko, E., Talacko, & Harant, K. (2019). The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors. Journal of Natural Products, 82(5), 1217-1226. https://doi.org/10.1021/acs.jnatprod.8b00968
Erejuwa, O.O., Sulaiman, S.A., & Wahab, M.S. (2012). Fructose might contribute to the hypoglycemic effect of honey. Molecules, 17(2), 1900-1915. https://doi.org/10.3390/molecules17021900
Fakhlaei, R., Selamat, J., Khatib, A., Razis, A.F.A., Sukor, R., Ahmad, S., & Babadi, A.A. (2020). The Toxic Impact of Honey Adulteration: A Review. Foods, 9(11), 1538. https://doi.org/10.3390/foods9111538
Fernández-Estellé, M., Hernández-González, V., Saurina, J., Núñez, O., & Sentellas, S. (2023). Characterization and Classification of Spanish Honeydew and Blossom Honeys Based on Their Antioxidant Capacity. Antioxidants (Basel), 12(2), 495. https://doi.org/10.3390/antiox12020495
Ghidotti, M., Fiamegos, Y., Dumitrascu, C., & de la Calle, M.B. (2021). Use of elemental profiles to verify geographical origin and botanical variety of Spanish honeys with a protected denomination of origin. Food Chemistry, 342, 128350. https://doi.org/10.1016/j.foodchem.2020.128350
Guijarro, S.L, Rubio, D., Aucatoma, B., Guillén, T., Vargas, P., Ciobotă,V., Stolker, L., Ulic, S., Vásquez, L., Garrido, P., Bravo, J., & Ramos, L. (2019). Exploratory monitoring of the quality and authenticity of commercial honey in Ecuador. Foods, 8(3), 105, https://doi.org/10.3390/foods8030105
Haidamus, S.L., Lorenzon, M.C.A., Koshiyama, A.S., & Tassinari, W.S. (2019). Floral Diversity in Different Types of Honey. Brazilian Archives of Biology and Technology, 62, e19180241. https://doi.org/10.1590/1678-4324-2019180241
Jandrić, Z., Haughey, S.A., Frew, R.D., McComb, K., Galvin-King, P., Elliott, C.T., & Cannavan, A. (2015). Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chemistry, 189, 52-59. https://doi.org/10.1016/j.foodchem.2014.11.165
Kędzierska-Matysek, M., Florek, M., Wolanciuk, A., Barłowska, J., & Litwińczuk, Z. (2018). Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland. Biological Trace Element Research, 186(2), 579-588. https://doi.org/10.1007/s12011-018-1315-0
Majewska, E., Drużyńska, B., & Wołosiak, R. (2019). Determination of the botanical origin of honeybee honeys based on the analysis of their selected physicochemical parameters coupled with chemometric assays. Food Science and Biotechnology, 28, 1307-1314. https://doi.org/10.1007/s10068-019-00598-5
Mongi, R.H. (2024). Influence of botanical origin and geographical zones on physicochemical properties, mineral contents and consumer acceptance of honey in Tanzania. Food Chemistry Advances, 4, 100731. https://doi.org/10.1016/j.focha.2024.100731
Orr, M.C., Jakob, M., Harmon-Threatt, A., & Mupepele, A.C. (2022). A review of global trends in the study types used to investigate bee nesting biology. Basic and Applied Ecology, 62, 12-21. https://doi.org/10.1016/j.baae.2022.03.012
Ouchemoukh, S., Amessis-Ouchemoukh, N., Gómez-Romero, M., Aboud, F., Giuseppe, A., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2017). Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT - Food Science and Technology, 85, 460-469. https://doi.org/10.1016/j.lwt.2016.11.084
Papa, G., Maier, R., Durazzo, A., Lucarini, M., Karabagias, I.K., Plutino, M., Bianchetto, E., Aromolo, R., Pignatti, G., Ambrogio, A., Pellecchia, M., & Negri, I. (2022). The honey bee Apis mellifera: an insect at the interface between human and ecosystem health. Biology, 11(2), 233. https://doi.org/10.3390/biology11020233
Piana, M.L., Persano, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Guyot, C. (2004). Sensory analysis applied to honey: state of the art. Apidologie, 35(1), S26-S37. https://doi.org/10.1051/apido:2004048
Rababah, T., Al-U’datt, M., Naqresh, A., Gammoh, S., Almajwal, A., Saleh, M., Yücel, S., AL-Rayyan, Y., & AL-Rayyan, N. (2024). Effect of temperature and time on the physicochemical and sensory properties of crystallized honey. ACS Omega, 9, 18, 20243-20252, https://doi.org/10.1021/acsomega.4c00570
Rodríguez, I., Salud, H., Galán-Soldevilla, G.P., & Ubera, J.L. (2015). Sensory analysis integrated by palynological and physicochemical determinations plays a key role in differentiating unifloral honeys of similar botanical origins (Myrtaceae honeys from southern Spain). International Journal of Food Science and Technology, 50(7), 1545-1551. https://doi.org/10.1111/ijfs.12802
Sajtos, Z., Zsófia, Á., Hódi, F., Szigeti, V., Bellér, G., & Baranyai, E. (2024). Hydroxymethylfurfural content of old honey samples – Does the sticky treat really last forever? LWT, 193, 115781. https://doi.org/10.1016/j.lwt.2024.115781
Sancho, M.T., Muniategui, S., Sánchez, M.P., Huidobro, J.F., & Simal, J. (1991). Relationships between electrical conductivity and total and sulphated ash contents in Basque honeys. Apidologie, 22(5), 487-494. https://doi.org/10.1051/apido:19910501
Selvaraju, K., Vikram, P., Soon, J.M., Krishnan, K.T., & Mohammed, A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology, 56(5), 2508-2521. https://doi.org/10.1007/s13197-019-03728-3
Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I., & Gan, S.H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chemistry Central Journal, 12(1), 35. https://doi.org/10.1186/s13065-018-0408-3
Singh, I., & Singh, S. (2018). Honey moisture reduction and its quality. Journal of Food Science and Technology, 55(10), 3861-3871. https://doi.org/10.1007/s13197-018-3341-5
Świąder, K., & Marczewska, M. (2021). Trends of using sensory evaluation in new product development in the food industry in countries that belong to the EIT Regional Innovation Scheme. Foods, 10(2), 446. https://doi.org/10.3390/foods10020446
Tischer, S.K., Silva, B., Bergamo, G., Brugnerotto, P., Valdemiro, L., Fett, R., & Oliveira, A.C. (2019). An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Research International, 119, 44-66. https://doi.org/10.1016/j.foodres.2019.01.028
Tlak, G.I., Pavliček, D., Oreščanin, V., Varenina, I., Sedak, M., & Bilandžić, N. (2024). Mineral concentrations in different types of honey originating from three regions of continental Croatia. Foods, 13(17), 2754. https://doi.org/10.3390/foods13172754
Tsagkaris, A.S., Koulis, G.A., Danezis, G.P., Martakos, I., Dasenaki, M., Georgiou, C.A., & Thomaidis, N.S. (2021). Honey authenticity: analytical techniques, state of the art and challenges. RSC Advances, 11(19), 11273-11294. https://doi.org/10.1039/d1ra00069a
Vîjan, L.E., Mazilu, I.C., Enache, C., Enache, S., & Topală, C.M. (2023). Botanical origin influence on some honey physicochemical characteristics and antioxidant properties. Foods, 12(11), 2134. https://doi.org/10.3390/foods12112134
Yang, J., Liu, Y., Cui, Z., Wang, T., Liu, T., & Liu, G. (2024). Analysis of free amino acid composition and honey plant species in seven honey species in China. Foods, 13(7), 1065. https://doi.org/10.3390/foods13071065
Żak, N., & Wilczyńska, A. (2023). The importance of testing the quality and authenticity of food products: the example of honey. Foods, 12(17), 3210. https://doi.org/10.3390/foods12173210
Zhang, X.H., Hui-Wen, G., Ren-Jun, L., Xiang-Dong, Q., & Jin-Fang, N. (2023). A comprehensive review of the current trends and recent advancements on the authenticity of honey. Food Chemistry, 19, 100850, https://doi.org/10.1016/j.fochx.2023.100850
Publicado
Declaración de disponibilidad de datos
No aplicable.
Número
Sección
Licencia
Derechos de autor 2024 Daliannis Rodríguez, Edwin R. Cevallos (Autor/a)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.