Use of Cuban sardines in anchovy production: analysis of physicochemical and sensory factors

Authors

DOI:

https://doi.org/10.5281/zenodo.13996977

Keywords:

Cuban sardines, anchovy production, salting-ripening process, physicochemical analysis, sensory evaluation, microbiological safety

Abstract

The salting-ripening process has traditionally been applied to different pelagic species to obtain a product with typical sensory characteristics distinct from fresh fish. In this regard, the general objective of the research was to evaluate Cuban sardines for the production of anchovy products, aiming for their potential industrial production. The study sought to verify that this species was microbiologically safe for human health and to compare it physically and sensorially with a traditional anchovy product. It was concluded that it was advisable to use this type of sardine for producing anchovy products, as the physicochemical results were quite similar to those found in the consulted literature. Despite having a shorter ripening time (3 months), the product received high consumer acceptance.

References

Aizpún, J., Moreno, V., & Malaspina, A. (1979). Variaciones en la composición bioquímica proximal de la anchoíta durante tres temporadas de pesca (1975-1977). Revista de Investigación y Desarrollo Pesquero, 1 (1), 45-53.

Bera, I., O'Sullivan, M., & Flynn, D. (2023). Shields DC. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules, 28(7), 3204. https://doi.org/10.3390/molecules28073204

Bishop, M.J., Mayer-Pinto, M., Airoldi, L., Firth, L.B., Morris, R.L., Loke, L.H.L., Hawkins, S., Naylor, L.A., Coleman, R.A., Chee, S.Y., & Dafforn, K.A. (2017). Effects of ocean sprawl on ecological connectivity: impacts and solutions. Journal of Experimental Marine Biology and Ecology, 492, 7-30. https://doi.org/10.1016/j.jembe.2017.01.021

Cabrer, A.I., Casales, M.R., & Yeannes, M.I. (2008). Physical and Chemical Changes in Anchovy (Engraulis anchoita) Flesh During Marination. Journal of Aquatic Food Product Technology, 11(1), 19-30. https://doi.org/10.1300/J030v11n01_03

Claro, R., Sadovy, Y., Lindeman, K.C., & García-Cagid, A.R. (2009). Historical analysis of Cuban commercial fishing effort and the effects of management interventions on important reef fishes from 1960-2005. Fisheries Research, 99(1), 7-16. https://doi.org/10.1016/j.fishres.2009.04.004

Czerner, M. (2011). Aspectos tecnológicos de la maduración de anchoíta (Engraulis anchoita) salada. Efecto de la composición química y otras variables tecnológicas. Universidad de La Plata.

Dambrosio, A., Quaglia, N.C., Colonna, M.A., Capuozzo, F., Giannico, F., Tarricone, S., Caputi, A., & Ragni, M. (2023). Shelf-life and quality of anchovies (Engraulis encrasicolus) refrigerated using different packaging materials. Fishes, 8(5), 268. https://doi.org/10.3390/fishes8050268

Dutta, B., & Bandopadhyay, R. (2022). Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 75. https://doi.org/10.1186/s43088-022-00252-w

Eggersdorfer, M., Berger, M.M., Calder, P.C., Gombart, A.F., Ho, E., Laviano, A., & Meydani, S.N. (2022). Perspective: role of micronutrients and omega-3 long-chain polyunsaturated fatty acids for immune outcomes of relevance to infections in older adults-a narrative review and call for action. Advances in Nutrition, 13(5), 1415-1430. https://doi.org/10.1093/advances/nmac058

Jensen, K.N., Jacobsen, C., & Nielsen, H.H. (2007). Fatty acid composition of herring (Clupea harengus L.): influence of time and place of catch on n-3 PUFA content. Journal of the Science of Food and Agriculture, 87(4), 710-718.

Lorenzo, J.M., Munekata, P.E., Dominguez, R., Pateiro, M., Saraiva, J.A., & Franco, D. (2018). Main groups of microorganisms of relevance for food safety and stability: general aspects and overall description. Innovative Technologies for Food Preservation, 53-107. https://doi.org/10.1016/B978-0-12-811031-7.00003-0

Maneffa, A.J., Stenner, R., Matharu, A.S., Clark, J.H., Matubayasi, N., & Shimizu, S. (2017). Water activity in liquid food systems: a molecular scale interpretation. Food Chemistry, 237, 1133-1138. https://doi.org/10.1016/j.foodchem.2017.06.046

Maponga, B.A., Chirundu, D., Gombe, N.T., Tshimanga, M., Bangure, D., & Takundwa, L. (2015). Cholera: a comparison of the 2008-9 and 2010 outbreaks in Kadoma City, Zimbabwe. Pan African Medical Journal, 20, 221. https://doi.org/10.11604/pamj.2015.20.221.5197

Margiati, R., Marvie, I., & Nasution, S. (2024). Effect of salt concentration and fermentation time in the development of anchovy (Stolephorus sp.) Bekasam as tempura raw material. AGRITEPA: Jurnal Ilmu Dan Teknologi Pertanian, 11(1), 15-28. https://doi.org/10.37676/agritepa.v11i1.4829

Moran-Reyna, A., & Coker, J.A. (2014). The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000Research, 3, 168. https://doi.org/10.12688/f1000research.4789.2

NC 1032-1. (2014). Análisis sensorial. Principios generales para la formación de catadores y funcionamiento de las CES. Parte 1. Formación. Cuba.

NC 585. (2015). Criterios microbiológicos por grupo de alimentos. Cuba.

Ngasotter, S., Mukherjee, S., Singh, S.K., Bharti, D., Haque, R., Varshney, S., Nanda, C., Waikhom, D., Devi, M.S., & Singh, A.S. (2022). Prevalence, virulence, and antibiotic resistance of Vibrio parahaemolyticus from seafood and its environment: an updated review. Mediterranean Journal of Infection, Microbes & Antimicrobials, 11(1), 1-1. https://doi.org/10.4274/mjima.galenos.2021.2021.1

Popa, G.L., & Papa, M.I. (2021). Salmonella spp. infection - a continuous threat worldwide. Germs, 11(1), 88-96. https://doi.org/10.18683/germs.2021.1244

Pounds, A., Kaminski, A.M., Budhathoki, M., Gudbrandsen, O., Kok, B., Horn, S., Malcorps, W., Abdullah-Al, M., McGoohan, A., Newton, R., Ozretich, R., & Little, D.C. (2022). More than fish-framing aquatic animals within sustainable food systems. Foods, 11(10), 1413. https://doi.org/10.3390/foods11101413

Ruiz-Capillas, C., & Herrero, A.M. (2021). Sensory analysis and consumer research in new product development. Foods, 10(3), 582. https://doi.org/10.3390/foods10030582

Salive, A.F.V., Prudêncio, C.V., Baglinière, F., Oliveira, L.L., Ferreira, S.O., & Vanetti, M.C.D. (2020). Comparison of stress conditions to induce viable but non-cultivable state in Salmonella. Brazilian Journal of Microbiology, 51(3), 1269-1277. https://doi.org/10.1007/s42770-020-00261-w

Sheng, L., & Wang, L. (2021). The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20(1), 738-786. https://doi.org/10.1111/1541-4337.12671

Stein, R.A., & Chirilã, M. (2017). Routes of transmission in the food chain. Foodborne Diseases, 65-103. https://doi.org/10.1016/B978-0-12-385007-2.00003-6

Tavares, J., Martins, A., Fidalgo, L.G., Lima, V., Amaral, R.A., Pinto, C.A., Silva, A.M., & Saraiva, J.A. (2021). Fresh fish degradation and advances in preservation using physical emerging technologies. Foods, 10(4), 780. https://doi.org/10.3390/foods10040780

Yohans, H., Mitiku, B.A., & Tassew, H. (2022). Levels of Escherichia coli as bio-indicator of contamination of fish food and antibiotic resistance pattern along the value chain in Northwest Ethiopia. Veterinary Medicine: Research and Reports, 13, 299-311. https://doi.org/10.2147/VMRR.S373738

Published

2024-07-30

Data Availability Statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Issue

Section

Original articles

How to Cite

Chaple, I. N., & Ros, O. (2024). Use of Cuban sardines in anchovy production: analysis of physicochemical and sensory factors. Journal of Food Science and Gastronomy, 2(2), 17-23. https://doi.org/10.5281/zenodo.13996977

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.