Comprehensive analysis of bee honey: from chemical composition to sensory characterization

Authors

DOI:

https://doi.org/10.5281/zenodo.13996987

Keywords:

bee honey, chemical composition, organoleptic properties, sensory analysis, honey authenticity

Abstract

Bee honey is a natural product with a complex chemical composition that varies according to its botanical and geographical origin. This article provides a comprehensive analysis of honey, addressing its chemical composition, which includes sugars, proteins, vitamins, minerals, and bioactive compounds, as well as its impact on organoleptic properties. Analytical techniques used to determine the chemical composition, such as chromatography and spectroscopy, are examined, highlighting their importance for the authenticity and quality of honey. Additionally, sensory evaluation methods are explored, which allow for the characterization of the flavor, aroma, and color of honey, and how these attributes are influenced by factors such as floral origin and processing conditions. Finally, the relevance of a multidimensional approach to honey evaluation is discussed, integrating both chemical composition and sensory characteristics, thereby contributing to a better understanding of its quality and potential as a functional product in food and health.

References

Abdi, G.G., Tola, Y.B., & Kuyu, C.G. (2024). Assessment of Physicochemical and Microbiological Characteristics of Honey in Southwest Ethiopia: Detection of Adulteration through Analytical Simulation. Journal of Food Protection, 87(1), 100194. https://doi.org/10.1016/j.jfp.2023.100194

Addi, A., & Bareke, T. (2021). Botanical origin and characterization of monofloral honeys in Southwestern forest of Ethiopia. Food Science and Nutrition, 9(9), 4998-5005. https://doi.org/10.1002/fsn3.2453

Al-Kafaween, M.A., Alwahsh, M., Mohd, A.B., & Abulebdah. D.H. (2023). Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel), 12(2), 337. https://doi.org/10.3390/antibiotics12020337

Amariei, S., Norocel, L., & Agripina, L. (2020). An innovative method for preventing honey crystallization. Innovative Food Science & Emerging Technologies, 66, 102481. https://doi.org/10.1016/j.ifset.2020.102481

Anupama, D., Bhat, K.K., & Sapna, V.K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food Research International, 36(2), 183-191 https://doi.org/10.1016/S0963-9969(02)00135-7

Becerril-Sánchez, A.L., Quintero-Salazar, B., Dublán-García, O., & Escalona-Buendía. H.B. (2021). Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel), 10(11), 1700. https://doi.org/10.3390/antiox10111700

Bodor, Z., Benedek, C., Urbin, Á., Szabó, D., & Sipos, L. (2021). Colour of honey: can we trust the Pfund scale? – An alternative graphical tool covering the whole visible spectra. LWT, 149, 111859. https://doi.org/10.1016/j.lwt.2021.111859

Bogdanov, S., Haldimann, M., Luginbühl, W., & Gallmann, P. (2007). Minerals in honey: environmental, geographical and botanical aspects. Journal of Apicultural Research, 46(4), 269-275. https://doi.org/10.1080/00218839.2007.11101407

Burton, I.W., Kompany-Zareh, M., Haverstock, S., Haché, J., Martinez-Farina, C.F., Wentzell, P.D., & Berrué, F. (2023). Analysis and discrimination of Canadian honey using quantitative nmr and multivariate statistical methods. Molecules, 28(4), 1656. https://doi.org/10.3390/molecules28041656

Calaça, P., Schlindwein, C., & Bastos, E.M.A.F. (2018). Discriminating unifloral honey from a dioecious mass flowering tree of Brazilian seasonally dry tropical forest through pollen spectra: consequences of honeybee preference for staminate flowers. Apidologie, 49, 705-720. https://doi.org/10.1007/s13592-018-0597-8

Chang, H., Ding, G., Jia, G., Feng, M., & Huang, J. (2022). Hemolymph Metabolism Analysis of Honey Bee (Apis mellifera L.) Response to Different Bee Pollens. Insects, 14(1), 37. https://doi.org/10.3390/insects14010037

Chen, C. (2019). Relationship between Water Activity and Moisture Content in Floral Honey. Foods, 8(1), 30. https://doi.org/10.3390/foods8010030

Christopher, J.A., Manley-Harris, M., & Molan, P.C. (2009). The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344(8), 1050-1053. https://doi.org/10.1016/j.carres.2009.03.020

Ciursa, P., & Oroian, M. (2021). Rheological behavior of honey adulterated with agave, maple, corn, rice and inverted sugar syrups. Scientific Reports, 11(1), 23408. https://doi.org/10.1038/s41598-021-02951-3

Conti, M.E., Stripeikis, J., Campanella, L., Cucina, D., & Tudino, M.B. (2007). Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters. Chemistry Central Journal, 1, 14. https://doi.org/10.1186/1752-153X-1-14

Erban, T., Shcherbachenko, E., Talacko, & Harant, K. (2019). The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors. Journal of Natural Products, 82(5), 1217-1226. https://doi.org/10.1021/acs.jnatprod.8b00968

Erejuwa, O.O., Sulaiman, S.A., & Wahab, M.S. (2012). Fructose might contribute to the hypoglycemic effect of honey. Molecules, 17(2), 1900-1915. https://doi.org/10.3390/molecules17021900

Fakhlaei, R., Selamat, J., Khatib, A., Razis, A.F.A., Sukor, R., Ahmad, S., & Babadi, A.A. (2020). The Toxic Impact of Honey Adulteration: A Review. Foods, 9(11), 1538. https://doi.org/10.3390/foods9111538

Fernández-Estellé, M., Hernández-González, V., Saurina, J., Núñez, O., & Sentellas, S. (2023). Characterization and Classification of Spanish Honeydew and Blossom Honeys Based on Their Antioxidant Capacity. Antioxidants (Basel), 12(2), 495. https://doi.org/10.3390/antiox12020495

Ghidotti, M., Fiamegos, Y., Dumitrascu, C., & de la Calle, M.B. (2021). Use of elemental profiles to verify geographical origin and botanical variety of Spanish honeys with a protected denomination of origin. Food Chemistry, 342, 128350. https://doi.org/10.1016/j.foodchem.2020.128350

Guijarro, S.L, Rubio, D., Aucatoma, B., Guillén, T., Vargas, P., Ciobotă,V., Stolker, L., Ulic, S., Vásquez, L., Garrido, P., Bravo, J., & Ramos, L. (2019). Exploratory monitoring of the quality and authenticity of commercial honey in Ecuador. Foods, 8(3), 105, https://doi.org/10.3390/foods8030105

Haidamus, S.L., Lorenzon, M.C.A., Koshiyama, A.S., & Tassinari, W.S. (2019). Floral Diversity in Different Types of Honey. Brazilian Archives of Biology and Technology, 62, e19180241. https://doi.org/10.1590/1678-4324-2019180241

Jandrić, Z., Haughey, S.A., Frew, R.D., McComb, K., Galvin-King, P., Elliott, C.T., & Cannavan, A. (2015). Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chemistry, 189, 52-59. https://doi.org/10.1016/j.foodchem.2014.11.165

Kędzierska-Matysek, M., Florek, M., Wolanciuk, A., Barłowska, J., & Litwińczuk, Z. (2018). Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland. Biological Trace Element Research, 186(2), 579-588. https://doi.org/10.1007/s12011-018-1315-0

Majewska, E., Drużyńska, B., & Wołosiak, R. (2019). Determination of the botanical origin of honeybee honeys based on the analysis of their selected physicochemical parameters coupled with chemometric assays. Food Science and Biotechnology, 28, 1307-1314. https://doi.org/10.1007/s10068-019-00598-5

Mongi, R.H. (2024). Influence of botanical origin and geographical zones on physicochemical properties, mineral contents and consumer acceptance of honey in Tanzania. Food Chemistry Advances, 4, 100731. https://doi.org/10.1016/j.focha.2024.100731

Orr, M.C., Jakob, M., Harmon-Threatt, A., & Mupepele, A.C. (2022). A review of global trends in the study types used to investigate bee nesting biology. Basic and Applied Ecology, 62, 12-21. https://doi.org/10.1016/j.baae.2022.03.012

Ouchemoukh, S., Amessis-Ouchemoukh, N., Gómez-Romero, M., Aboud, F., Giuseppe, A., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2017). Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT - Food Science and Technology, 85, 460-469. https://doi.org/10.1016/j.lwt.2016.11.084

Papa, G., Maier, R., Durazzo, A., Lucarini, M., Karabagias, I.K., Plutino, M., Bianchetto, E., Aromolo, R., Pignatti, G., Ambrogio, A., Pellecchia, M., & Negri, I. (2022). The honey bee Apis mellifera: an insect at the interface between human and ecosystem health. Biology, 11(2), 233. https://doi.org/10.3390/biology11020233

Piana, M.L., Persano, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Guyot, C. (2004). Sensory analysis applied to honey: state of the art. Apidologie, 35(1), S26-S37. https://doi.org/10.1051/apido:2004048

Rababah, T., Al-U’datt, M., Naqresh, A., Gammoh, S., Almajwal, A., Saleh, M., Yücel, S., AL-Rayyan, Y., & AL-Rayyan, N. (2024). Effect of temperature and time on the physicochemical and sensory properties of crystallized honey. ACS Omega, 9, 18, 20243-20252, https://doi.org/10.1021/acsomega.4c00570

Rodríguez, I., Salud, H., Galán-Soldevilla, G.P., & Ubera, J.L. (2015). Sensory analysis integrated by palynological and physicochemical determinations plays a key role in differentiating unifloral honeys of similar botanical origins (Myrtaceae honeys from southern Spain). International Journal of Food Science and Technology, 50(7), 1545-1551. https://doi.org/10.1111/ijfs.12802

Sajtos, Z., Zsófia, Á., Hódi, F., Szigeti, V., Bellér, G., & Baranyai, E. (2024). Hydroxymethylfurfural content of old honey samples – Does the sticky treat really last forever? LWT, 193, 115781. https://doi.org/10.1016/j.lwt.2024.115781

Sancho, M.T., Muniategui, S., Sánchez, M.P., Huidobro, J.F., & Simal, J. (1991). Relationships between electrical conductivity and total and sulphated ash contents in Basque honeys. Apidologie, 22(5), 487-494. https://doi.org/10.1051/apido:19910501

Selvaraju, K., Vikram, P., Soon, J.M., Krishnan, K.T., & Mohammed, A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. Journal of Food Science and Technology, 56(5), 2508-2521. https://doi.org/10.1007/s13197-019-03728-3

Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I., & Gan, S.H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chemistry Central Journal, 12(1), 35. https://doi.org/10.1186/s13065-018-0408-3

Singh, I., & Singh, S. (2018). Honey moisture reduction and its quality. Journal of Food Science and Technology, 55(10), 3861-3871. https://doi.org/10.1007/s13197-018-3341-5

Świąder, K., & Marczewska, M. (2021). Trends of using sensory evaluation in new product development in the food industry in countries that belong to the EIT Regional Innovation Scheme. Foods, 10(2), 446. https://doi.org/10.3390/foods10020446

Tischer, S.K., Silva, B., Bergamo, G., Brugnerotto, P., Valdemiro, L., Fett, R., & Oliveira, A.C. (2019). An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Research International, 119, 44-66. https://doi.org/10.1016/j.foodres.2019.01.028

Tlak, G.I., Pavliček, D., Oreščanin, V., Varenina, I., Sedak, M., & Bilandžić, N. (2024). Mineral concentrations in different types of honey originating from three regions of continental Croatia. Foods, 13(17), 2754. https://doi.org/10.3390/foods13172754

Tsagkaris, A.S., Koulis, G.A., Danezis, G.P., Martakos, I., Dasenaki, M., Georgiou, C.A., & Thomaidis, N.S. (2021). Honey authenticity: analytical techniques, state of the art and challenges. RSC Advances, 11(19), 11273-11294. https://doi.org/10.1039/d1ra00069a

Vîjan, L.E., Mazilu, I.C., Enache, C., Enache, S., & Topală, C.M. (2023). Botanical origin influence on some honey physicochemical characteristics and antioxidant properties. Foods, 12(11), 2134. https://doi.org/10.3390/foods12112134

Yang, J., Liu, Y., Cui, Z., Wang, T., Liu, T., & Liu, G. (2024). Analysis of free amino acid composition and honey plant species in seven honey species in China. Foods, 13(7), 1065. https://doi.org/10.3390/foods13071065

Żak, N., & Wilczyńska, A. (2023). The importance of testing the quality and authenticity of food products: the example of honey. Foods, 12(17), 3210. https://doi.org/10.3390/foods12173210

Zhang, X.H., Hui-Wen, G., Ren-Jun, L., Xiang-Dong, Q., & Jin-Fang, N. (2023). A comprehensive review of the current trends and recent advancements on the authenticity of honey. Food Chemistry, 19, 100850, https://doi.org/10.1016/j.fochx.2023.100850

Published

2024-07-30

Data Availability Statement

Not applicable.

Issue

Section

Review articles

How to Cite

Rodríguez, D., & Cevallos, E. R. (2024). Comprehensive analysis of bee honey: from chemical composition to sensory characterization. Journal of Food Science and Gastronomy, 2(2), 32-40. https://doi.org/10.5281/zenodo.13996987

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.