Efecto de la adición de aceite esencial de canela americana (Ocotea quixos) en la permeabilidad al vapor de agua de películas de quitosana
DOI:
https://doi.org/10.5281/zenodo.13996191Palabras clave:
películas de quitosana, aceite esencial de canela americana, propiedades de barrera, permeabilidad al vapor de aguaResumen
El objetivo de este trabajo fue desarrollar películas de quitosana con Tween 80 y aceite esencial de canela americana (Ocotea quixos) con buenas propiedades de barrera al vapor de agua. Los espesores de las películas (42-92 µm) fueron consistentes con los reportados para biomateriales similares. El contenido de humedad osciló entre 23 y 48 %, sin mostrar una tendencia significativa (p>0,05) en función de las concentraciones de quitosana y aceite esencial, probablemente debido a las bajas cantidades de aceite esencial añadidas (0,1; 0,3; 0,5 % v/v). Las permeabilidades al vapor de agua (WVP) variaron entre 0,349 y 0,802 g mm m-2 h-1 kPa-1, sin cambios relevantes por la concentración de polímero o la adición del aceite esencial. Un modelo cúbico explicó el 99,76 % de la variabilidad de la WVP con un nivel de confianza del 95 %. La formulación óptima fue de 1,5 % (m/v) de quitosana, 0,3 % (v/v) de Tween 80 y 0,5 % (v/v) de aceite esencial. La película optimizada mostró propiedades consistentes en WVP, espesor y contenido de humedad con las demás formulaciones, debido a la estandarización del proceso. La adición de aceite esencial redujo la solubilidad de las películas en agua.
Referencias
Azevedo, A.G., Barros, C., Miranda, S., Machado, A.V., Castro, O., Silva, B., Saraiva, M., Silva, A.S., Pastrana, L., Carneiro, O.S., & Cerqueira, M.A. (2022). Active flexible films for food packaging: a review. Polymers, 14(12), 2442. https://doi.org/10.3390/polym14122442
Bide, Y., Fashapoyeh, M.A., & Shokrollahzadeh, S. (2021). Structural investigation and application of Tween 80-choline chloride self-assemblies as osmotic agent for water desalination. Scientific reports, 11(1), 17068. https://doi.org/10.1038/s41598-021-96199-6
Bonilla, J., Talón, E., Atarés, L., Vargas, M., & Chiralt, A. (2013). Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch-chitosan films. Journal of Food Engineering, 118(3), 271-278. https://doi.org/10.1016/j.jfoodeng.2013.04.008
Casalini, S., & Giacinti, M. (2023). The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. Journal of the Science of Food and Agriculture, 103(3), 1021-1041. https://doi.org/10.1002/jsfa.11918
Casariego, A. (2009). Desarrollo de películas y coberturas de quitosana de empleo potencial en alimentos (tesis doctoral, Universidad de La Habana), 194 p.
Chen, C., Kuo, W., & Lai, L. (2009). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23(3), 714-721. https://doi.org/10.1016/j.foodhyd.2008.06.006
De la Paz, N., Fernández, M., López, O., Nogueira, A., García, C., Pérez, D., Tobella, J., Montes de Oca, Y., & Díaz, D. (2012). Optimización del proceso de obtención de quitosana derivada de la quitina de langosta. Revista Iberoamericana de Polímeros, 13(3), 103-116.
de Sousa, V.R., da Cunha, M., de Sousa, V., de Araújo, N.G., de Lima, N., & Rodrigues, R. (2020). A review on chitosan's uses as biomaterial: tissue engineering, Drug Delivery Systems and Cancer Treatment. Materials (Basel), 13(21), 4995. https://doi.org/10.3390/ma13214995
Desai, N., Rana, D., Salave, S., Gupta, R., Patel, P., Karunakaran, B., Sharma, A., Giri, J., Benival, D., & Kommineni, N. (2023). Chitosan: a potential biopolymer in drug delivery and biomedical applications. Pharmaceutics, 15(4), 1313. https://doi.org/10.3390/10.3390/pharmaceutics15041313
Eslami, Z., Elkoun, S., Robert, M., & Adjallé, K. (2023). A review of the effect of plasticizers on the physical and mechanical properties of alginate-based films. Molecules, 28(18), 6637. https://doi.org/10.3390/molecules28186637
Fadiji, T., & Pathare, P.B. (2023). Technological advancements in food processing and packaging. Processes, 11, 2571. https://doi.org/10.3390/pr11092571
Hashemi, S.M.B., Kaveh, S., Abedi, E., & Phimolsiripol, Y. (2023). polysaccharide-based edible films/coatings for the preservation of meat and fish products: emphasis on incorporation of lipid-based nanosystems loaded with bioactive compounds. Foods, 12(17), 3268. https://doi.org/10.3390/foods12173268
Khubiev, O.M., Egorov, A.R., Kirichuk, A.A., Khrustalev, V.N., Tskhovrebov, A.G., & Kritchenkov, A.S. (2023). Chitosan-based antibacterial films for biomedical and food applications. International Journal of Molecular Sciences, 24(13), 10738. https://doi.org/10.3390/ijms241310738
Moradi, M., Tajik, H., & Rohani, S. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477-484. https://doi.org/10.1016/j.lwt.2011.11.020
Ngasotter, S., Martin, K.A., Meitei, M.M., Waikhom, D., Madhulika, Pathak, J., & Singh, S.K. (2023). Crustacean shell waste derived chitin and chitin nanomaterials for application in agriculture, food, and health - a review. Carbohydrate Polymer Technologies and Applications, 6, 100349. https://doi.org/10.1016/j.carpta.2023.100349
Ojagh, S.M., Rezaei, M., Razavi, S.H., & Hosseini, S.M. (2010). Development and evaluation of o novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122, 161-166. https://doi.org/10.1016/j.foodchem.2010.02.033
Pastor, C., Sánchez-González, L., Chiralt, A., Cháfer, M., & González, C. (2013). Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids, 30, 272-280. https://doi.org/10.1016/j.foodhyd.2012.05.026
Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282-289. https://doi.org/10.1016/j.ijbiomac.2013.04.019
Ponnusamy, P.G., & Mani, S. (2022). Material and environmental properties of natural polymers and their composites for packaging applications-a review. Polymers (Basel), 14(19), 4033. https://doi.org/10.3390/polym14194033
Pranoto, Y., Rakshit, S.K., & Salokhe, V.M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT - Food Science and Technology, 38(8), 859-865. https://doi.org/10.1016/j.lwt.2004.09.014
Priya, K., Thirunavookarasu, N., & Chidanand, D.V. (2023). Recent advances in edible coating of food products and its legislations: a review. Journal of Agriculture and Food Research, 12, 100623. https://doi.org/10.1016/j.jafr.2023.100623
Rodríguez, M., Osés, J., Ziani, K., & Maté, J.I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. https://doi.org/10.1016/j.foodres.2006.04.002
Salgado, P.R., Di Giorgio, L., Musso, Y.S., & Mauri, A.N. (2021). Recent developments in smart food packaging focused on biobased and biodegradable Polymers. Frontiers in Sustainable Food Systems, 5, 2021. https://doi.org/10.3389/fsufs.2021.630393
Siripatrawan, U., & Harte, B. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775. https://doi.org/10.1016/j.foodhyd.2010.04.003
Souza, B.W., Cerqueira, M.A., Casariego, A., Lima, A.M., Teixeira, J.A., & Vicente, A.A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23, 2110-2115. https://doi.org/10.1016/j.foodhyd.2009.03.021
Turan, D. (2021). Water vapor transport properties of polyurethane films for packaging of respiring foods. Food Engineering Reviews, 13, 54-65 https://doi.org/10.1007/s12393-019-09205-z
Valarezo, E., Vullien, A., & Conde-Rojas, D. (2021). Variability of the chemical composition of the essential oil from the Amazonian Ishpingo species (Ocotea quixos). Molecules, 26(13), 3961. https://doi.org/10.3390/molecules26133961
Villalobos, R., Hernández, P., & Chiralt, A. (2006). Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids, 20, 502-509. https://doi.org/10.1016/j.foodhyd.2005.04.006
Wang, L., Dong, Y., Men, H. Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32, 35-41. https://doi.org/10.1016/j.foodhyd.2012.11.034
Yadav, M., Kaushik, B., Rao, G.K., Srivastava, C.M., & Vaya, D. (2023). Advances and challenges in the use of chitosan and its derivatives in biomedical fields: a review. Carbohydrate Polymer Technologies and Applications, 5, 100323. https://doi.org/10.1016/j.carpta.2023.100323
Publicado
Declaración de disponibilidad de datos
Los conjuntos de datos utilizados y/o analizados durante el presente estudio están disponibles por solicitud razonable al autor correspondiente.
Número
Sección
Licencia
Derechos de autor 2024 Inalvis Escalante, Flor M. Fon-Fay, Jorge A. Pino (Autor/a)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.