Effect of the addition of American cinnamon essential oil (Ocotea quixos) on the water vapor permeability of chitosan films

Authors

DOI:

https://doi.org/10.5281/zenodo.13996191

Keywords:

chitosan films, American cinnamon essential oil, barrier properties, water vapor permeability

Abstract

The objective of this study was to develop chitosan films with Tween 80 and the essential oil of American cinnamon (Ocotea quixos) with good water vapor barrier properties. The thickness of the films (42-92 µm) was consistent with those reported for similar biomaterials. The moisture content ranged between 23 and 48%, showing no significant trend (p>0.05) about the concentrations of chitosan and essential oil, likely due to the low amounts of essential oil added (0.1; 0.3; 0.5% v/v). The water vapor permeability (WVP) values ranged from 0.349 to 0.802 g mm m-2 h-1 kPa-1, with no relevant changes due to polymer concentration or the addition of essential oil. A cubic model explained 99.76% of the variability in WVP, with a confidence level of 95%. The optimal formulation was 1.5% (m/v) chitosan, 0.3% (v/v) Tween 80, and 0.5% (v/v) essential oil. The optimized film exhibited consistent properties in WVP, thickness, and moisture content with the other formulations, due to the standardization of the film production process. The addition of essential oil reduced the water solubility of the films.

References

Azevedo, A.G., Barros, C., Miranda, S., Machado, A.V., Castro, O., Silva, B., Saraiva, M., Silva, A.S., Pastrana, L., Carneiro, O.S., & Cerqueira, M.A. (2022). Active flexible films for food packaging: a review. Polymers, 14(12), 2442. https://doi.org/10.3390/polym14122442

Bide, Y., Fashapoyeh, M.A., & Shokrollahzadeh, S. (2021). Structural investigation and application of Tween 80-choline chloride self-assemblies as osmotic agent for water desalination. Scientific reports, 11(1), 17068. https://doi.org/10.1038/s41598-021-96199-6

Bonilla, J., Talón, E., Atarés, L., Vargas, M., & Chiralt, A. (2013). Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch-chitosan films. Journal of Food Engineering, 118(3), 271-278. https://doi.org/10.1016/j.jfoodeng.2013.04.008

Casalini, S., & Giacinti, M. (2023). The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. Journal of the Science of Food and Agriculture, 103(3), 1021-1041. https://doi.org/10.1002/jsfa.11918

Casariego, A. (2009). Desarrollo de películas y coberturas de quitosana de empleo potencial en alimentos (tesis doctoral, Universidad de La Habana), 194 p.

Chen, C., Kuo, W., & Lai, L. (2009). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23(3), 714-721. https://doi.org/10.1016/j.foodhyd.2008.06.006

De la Paz, N., Fernández, M., López, O., Nogueira, A., García, C., Pérez, D., Tobella, J., Montes de Oca, Y., & Díaz, D. (2012). Optimización del proceso de obtención de quitosana derivada de la quitina de langosta. Revista Iberoamericana de Polímeros, 13(3), 103-116.

de Sousa, V.R., da Cunha, M., de Sousa, V., de Araújo, N.G., de Lima, N., & Rodrigues, R. (2020). A review on chitosan's uses as biomaterial: tissue engineering, Drug Delivery Systems and Cancer Treatment. Materials (Basel), 13(21), 4995. https://doi.org/10.3390/ma13214995

Desai, N., Rana, D., Salave, S., Gupta, R., Patel, P., Karunakaran, B., Sharma, A., Giri, J., Benival, D., & Kommineni, N. (2023). Chitosan: a potential biopolymer in drug delivery and biomedical applications. Pharmaceutics, 15(4), 1313. https://doi.org/10.3390/10.3390/pharmaceutics15041313

Eslami, Z., Elkoun, S., Robert, M., & Adjallé, K. (2023). A review of the effect of plasticizers on the physical and mechanical properties of alginate-based films. Molecules, 28(18), 6637. https://doi.org/10.3390/molecules28186637

Fadiji, T., & Pathare, P.B. (2023). Technological advancements in food processing and packaging. Processes, 11, 2571. https://doi.org/10.3390/pr11092571

Hashemi, S.M.B., Kaveh, S., Abedi, E., & Phimolsiripol, Y. (2023). polysaccharide-based edible films/coatings for the preservation of meat and fish products: emphasis on incorporation of lipid-based nanosystems loaded with bioactive compounds. Foods, 12(17), 3268. https://doi.org/10.3390/foods12173268

Khubiev, O.M., Egorov, A.R., Kirichuk, A.A., Khrustalev, V.N., Tskhovrebov, A.G., & Kritchenkov, A.S. (2023). Chitosan-based antibacterial films for biomedical and food applications. International Journal of Molecular Sciences, 24(13), 10738. https://doi.org/10.3390/ijms241310738

Moradi, M., Tajik, H., & Rohani, S. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477-484. https://doi.org/10.1016/j.lwt.2011.11.020

Ngasotter, S., Martin, K.A., Meitei, M.M., Waikhom, D., Madhulika, Pathak, J., & Singh, S.K. (2023). Crustacean shell waste derived chitin and chitin nanomaterials for application in agriculture, food, and health - a review. Carbohydrate Polymer Technologies and Applications, 6, 100349. https://doi.org/10.1016/j.carpta.2023.100349

Ojagh, S.M., Rezaei, M., Razavi, S.H., & Hosseini, S.M. (2010). Development and evaluation of o novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122, 161-166. https://doi.org/10.1016/j.foodchem.2010.02.033

Pastor, C., Sánchez-González, L., Chiralt, A., Cháfer, M., & González, C. (2013). Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids, 30, 272-280. https://doi.org/10.1016/j.foodhyd.2012.05.026

Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282-289. https://doi.org/10.1016/j.ijbiomac.2013.04.019

Ponnusamy, P.G., & Mani, S. (2022). Material and environmental properties of natural polymers and their composites for packaging applications-a review. Polymers (Basel), 14(19), 4033. https://doi.org/10.3390/polym14194033

Pranoto, Y., Rakshit, S.K., & Salokhe, V.M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT - Food Science and Technology, 38(8), 859-865. https://doi.org/10.1016/j.lwt.2004.09.014

Priya, K., Thirunavookarasu, N., & Chidanand, D.V. (2023). Recent advances in edible coating of food products and its legislations: a review. Journal of Agriculture and Food Research, 12, 100623. https://doi.org/10.1016/j.jafr.2023.100623

Rodríguez, M., Osés, J., Ziani, K., & Maté, J.I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. https://doi.org/10.1016/j.foodres.2006.04.002

Salgado, P.R., Di Giorgio, L., Musso, Y.S., & Mauri, A.N. (2021). Recent developments in smart food packaging focused on biobased and biodegradable Polymers. Frontiers in Sustainable Food Systems, 5, 2021. https://doi.org/10.3389/fsufs.2021.630393

Siripatrawan, U., & Harte, B. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775. https://doi.org/10.1016/j.foodhyd.2010.04.003

Souza, B.W., Cerqueira, M.A., Casariego, A., Lima, A.M., Teixeira, J.A., & Vicente, A.A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23, 2110-2115. https://doi.org/10.1016/j.foodhyd.2009.03.021

Turan, D. (2021). Water vapor transport properties of polyurethane films for packaging of respiring foods. Food Engineering Reviews, 13, 54-65 https://doi.org/10.1007/s12393-019-09205-z

Valarezo, E., Vullien, A., & Conde-Rojas, D. (2021). Variability of the chemical composition of the essential oil from the Amazonian Ishpingo species (Ocotea quixos). Molecules, 26(13), 3961. https://doi.org/10.3390/molecules26133961

Villalobos, R., Hernández, P., & Chiralt, A. (2006). Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids, 20, 502-509. https://doi.org/10.1016/j.foodhyd.2005.04.006

Wang, L., Dong, Y., Men, H. Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32, 35-41. https://doi.org/10.1016/j.foodhyd.2012.11.034

Yadav, M., Kaushik, B., Rao, G.K., Srivastava, C.M., & Vaya, D. (2023). Advances and challenges in the use of chitosan and its derivatives in biomedical fields: a review. Carbohydrate Polymer Technologies and Applications, 5, 100323. https://doi.org/10.1016/j.carpta.2023.100323

Published

2024-01-26

Data Availability Statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Issue

Section

Original articles

How to Cite

Escalante, I., Fon-Fay, F. M., & Pino, J. A. (2024). Effect of the addition of American cinnamon essential oil (Ocotea quixos) on the water vapor permeability of chitosan films. Journal of Food Science and Gastronomy, 2(1), 6-13. https://doi.org/10.5281/zenodo.13996191

Similar Articles

11-19 of 19

You may also start an advanced similarity search for this article.