Characterization of the lipid profile of abdominal and gizzard fat of broiler chickens
DOI:
https://doi.org/10.5281/zenodo.13994670Keywords:
chicken fat, lipid profile, animal nutritionAbstract
It evaluated the influence of the diet on the lipidic profile of abdominal and gizzard fat of broiler chickens from farms with different climatic conditions. For determining the fatty acids of gizzard and abdomen samples it was used 300 g of fat (60% abdominal and 40% of gizzard). The color of solid and fused chicken fats was determined through the chromatic coordinates of the system CIE-L*a*b*. No significant differences existed (p≤0.05) among the lipid profiles of the pieces of chickens, which is related to the stability of the feeding that the poultry received in each one of the farms. Palmitic and oleic acids were the majority of fatty acids in the chicken fat.
References
Andreotti, M.O., Junqueira, O.M., Cancherini, L.C., Rodrigues, E.A., & Sakomura, N.K. (2001). Valor nutricional de algumas fontes de gordura para frangos de corte. In: Anais da 38° Reunião Anual da Sociedade Brasileira de Zootecnia. Piracicaba: SBZ.
Attia, Y.A., Al-Harthi, M.A., & El-Maaty, H.M.A. (2020). The effects of different oil sources on performance, digestive enzymes, carcass traits, biochemical, immunological, antioxidant, and morphometric responses of broiler chicks. Frontiers in Veterinary Science, Section Animal Nutrition and Metabolism, 7, 181. https://doi.org/10.3389/fvets.2020.00181
Cartoni, A., Mattioli, S., Twining, C., Dal Bosco, A., Donoghue, A.M., Arsi, K., Angelucci, E., Chiattelli, D., & Castellini, C. (2022). Poultry meat and eggs as an alternative source of n-3 long-chain polyunsaturated fatty acids for human nutrition. Nutrients, 14(9), 1969. https://doi.org/10.3390/nu14091969
Carvajal, C. (2015). Tejido adiposo, obesidad e insulino resistencia. Medicina Legal de Costa Rica, 32(2), 138-144.
Choi, J., Kong, B., Bowker, B.C., Zhuang, H., & Kim, W.K. (2023). Nutritional strategies to improve meat quality and composition in the challenging conditions of broiler production: a review. Animals (Basel), 13(8), 1386. https://doi.org/10.3390/ani13081386
Duarte, J.A., Carvalho, F., Pearson, M., Horton, J.D., Browning, J.D., Jones, J.G., & Burgess, S.C. (2014). A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. Journal of Lipid Research, 55(12), 2541-2553. https://doi.org/10.1194/jlr.M052308
Ferreri, C., Sansone, A., Buratta, S., Urbanelli, L., Costanzi, E., Emiliani, C., & Chatgilialoglu, C. (2020). The n-10 Fatty Acids Family in the Lipidome of Human Prostatic Adenocarcinoma Cell Membranes and Extracellular Vesicles. Cancers (Basel), 12(4), 900. https://dx.doi.org/10.3390/cancers12040900
Gallardo, M.A., Pérez, D.D., & Leighton, F.M. (2012). Modification of fatty acid composition in broiler chickens fed canola oil. Biological Research, 45(2), 149-161. https://dx.doi.org/10.4067/S0716-97602012000200007
Gutiérrez, M.A. (2020). En Chile, el consumo de carne de pollo lidera entre las carnes. Avinews. https://avinews.com/chile-consumo-carne-pollo-lidera-entre-carnes/
Hernández-Rodas, M.C., Morales, J., Valenzuela, R., Morales, G., & Valenzuela, A. (2016). Beneficios de los ácidos grasos poliinsaturados de cadena larga n-3 en la enfermedad por hígado graso no alcohólico. Revista Chilena de Nutrición, 43(2), 196-205. https://dx.doi.org/10.4067/S0717-75182016000200013
Ming, C.C., Gioielli, L.A., & Sotero, V. (2002). Fraccionamiento de la grasa abdominal de pollo. Grasas y Aceites, 53(3), 298-303.
Mir, N.A., Rafiq, A., Kumar, F., Singh, V., & Shukla, V. (2017). Determinants of broiler chicken meat quality and factors affecting them: a review. Journal of Food Science and Technology, 54(10), 2997-3009. https://doi.org/10.1007/s13197-017-2789-z
Piracicaba, S.P., Piracicaba, S.B.Z., Bhatnagar, A.S., Kumar, P., Hemavathy, J., & Krishna, G. (2009). Fatty acid composition; oxidative stability; and radical scavenging activity of vegetable oil blends with coconut oil. Journal of the American Oil Chemists Society, 86, 991-999. https://doi.org/10.1007/s11746-009-1435-y
Prosser, C.G., Svetashev, V.I., Vyssotski, M.V., & Lowry, D.J. (2010). Composition and distribution of fatty acids in triglycerides from goat infant formulas with milk fat. Journal of Dairy Science, 93(7), 2857-2862. https://doi.org/10.3168/jds.2009-2946
Ros, E., López-Miranda, J., Picó, C., Rubio, M.A., Babio, N., Sala-Vila, A., Pérez-Jiménez, F., Escrich, E., Bulló, M., Solanas, M., Gil, A., & Salas-Salvadó, J. (2015). Consenso sobre las grasas y aceites en la alimentación de la población española adulta; postura de la Federación Española de Sociedades de Alimentación, Nutrición y Dietética (FESNAD). Nutrición Hospitalaria, 32(2), 435-477
Santos, M.M.F., Lima, D.A.S., Madruga, M.S., & Silva, F.A.P. (2020). Lipid and protein oxidation of emulsified chicken patties prepared using abdominal fat and skin. Poultry Science, 99(3), 1777-1787. https://doi.org/10.1016/j.psj.2019.11.027
Saponaro, C., Gaggini, M., Carli, F., & Gastaldelli, A. (2015). The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients, 7(11), 9453-9474. https://doi.org/10.3390/nu7115475
Published
Data Availability Statement
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Issue
Section
License
Copyright (c) 2024 Yanelis Ruiz, Nahir Y. Dugarte (Autor/a)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.